// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package tsdb import ( "fmt" "math" "math/rand" "os" "path/filepath" "sort" "sync" "sync/atomic" "time" "encoding/binary" "github.com/go-kit/kit/log" "github.com/oklog/ulid" "github.com/pkg/errors" "github.com/prometheus/tsdb/chunks" "github.com/prometheus/tsdb/labels" ) var ( // ErrNotFound is returned if a looked up resource was not found. ErrNotFound = errors.Errorf("not found") // ErrOutOfOrderSample is returned if an appended sample has a // timestamp larger than the most recent sample. ErrOutOfOrderSample = errors.New("out of order sample") // ErrAmendSample is returned if an appended sample has the same timestamp // as the most recent sample but a different value. ErrAmendSample = errors.New("amending sample") // ErrOutOfBounds is returned if an appended sample is out of the // writable time range. ErrOutOfBounds = errors.New("out of bounds") ) // HeadBlock handles reads and writes of time series data within a time window. type HeadBlock struct { mtx sync.RWMutex dir string wal WAL activeWriters uint64 highTimestamp int64 closed bool // descs holds all chunk descs for the head block. Each chunk implicitly // is assigned the index as its ID. series []*memSeries // hashes contains a collision map of label set hashes of chunks // to their chunk descs. hashes map[uint64][]*memSeries symbols map[string]struct{} values map[string]stringset // label names to possible values postings *memPostings // postings lists for terms tombstones tombstoneReader meta BlockMeta } // TouchHeadBlock atomically touches a new head block in dir for // samples in the range [mint,maxt). func TouchHeadBlock(dir string, mint, maxt int64) (string, error) { entropy := rand.New(rand.NewSource(time.Now().UnixNano())) ulid, err := ulid.New(ulid.Now(), entropy) if err != nil { return "", err } // Make head block creation appear atomic. dir = filepath.Join(dir, ulid.String()) tmp := dir + ".tmp" if err := os.MkdirAll(tmp, 0777); err != nil { return "", err } if err := writeMetaFile(tmp, &BlockMeta{ ULID: ulid, MinTime: mint, MaxTime: maxt, }); err != nil { return "", err } return dir, renameFile(tmp, dir) } // OpenHeadBlock opens the head block in dir. func OpenHeadBlock(dir string, l log.Logger, wal WAL) (*HeadBlock, error) { meta, err := readMetaFile(dir) if err != nil { return nil, err } h := &HeadBlock{ dir: dir, wal: wal, series: []*memSeries{nil}, // 0 is not a valid posting, filled with nil. hashes: map[uint64][]*memSeries{}, values: map[string]stringset{}, symbols: map[string]struct{}{}, postings: &memPostings{m: make(map[term][]uint32)}, meta: *meta, tombstones: newEmptyTombstoneReader(), } return h, h.init() } func (h *HeadBlock) init() error { r := h.wal.Reader() seriesFunc := func(series []labels.Labels) error { for _, lset := range series { h.create(lset.Hash(), lset) h.meta.Stats.NumSeries++ } return nil } samplesFunc := func(samples []RefSample) error { for _, s := range samples { if int(s.Ref) >= len(h.series) { return errors.Errorf("unknown series reference %d (max %d); abort WAL restore", s.Ref, len(h.series)) } h.series[s.Ref].append(s.T, s.V) if !h.inBounds(s.T) { return errors.Wrap(ErrOutOfBounds, "consume WAL") } h.meta.Stats.NumSamples++ } return nil } deletesFunc := func(stones []Stone) error { for _, s := range stones { for _, itv := range s.intervals { h.tombstones.add(s.ref, itv) } } return nil } if err := r.Read(seriesFunc, samplesFunc, deletesFunc); err != nil { return errors.Wrap(err, "consume WAL") } return nil } // inBounds returns true if the given timestamp is within the valid // time bounds of the block. func (h *HeadBlock) inBounds(t int64) bool { return t >= h.meta.MinTime && t <= h.meta.MaxTime } func (h *HeadBlock) String() string { return h.meta.ULID.String() } // Close syncs all data and closes underlying resources of the head block. func (h *HeadBlock) Close() error { h.mtx.Lock() defer h.mtx.Unlock() if err := h.wal.Close(); err != nil { return errors.Wrapf(err, "close WAL for head %s", h.dir) } // Check whether the head block still exists in the underlying dir // or has already been replaced with a compacted version or removed. meta, err := readMetaFile(h.dir) if os.IsNotExist(err) { return nil } if err != nil { return err } if meta.ULID == h.meta.ULID { return writeMetaFile(h.dir, &h.meta) } h.closed = true return nil } // Meta returns a BlockMeta for the head block. func (h *HeadBlock) Meta() BlockMeta { m := BlockMeta{ ULID: h.meta.ULID, MinTime: h.meta.MinTime, MaxTime: h.meta.MaxTime, Compaction: h.meta.Compaction, } m.Stats.NumChunks = atomic.LoadUint64(&h.meta.Stats.NumChunks) m.Stats.NumSeries = atomic.LoadUint64(&h.meta.Stats.NumSeries) m.Stats.NumSamples = atomic.LoadUint64(&h.meta.Stats.NumSamples) return m } // Tombstones returns the TombstoneReader against the block. func (h *HeadBlock) Tombstones() TombstoneReader { return h.tombstones } // Delete implements headBlock. func (h *HeadBlock) Delete(mint int64, maxt int64, ms ...labels.Matcher) error { ir := h.Index() pr := newPostingsReader(ir) p, absent := pr.Select(ms...) var stones []Stone Outer: for p.Next() { ref := p.At() lset := h.series[ref].lset for _, abs := range absent { if lset.Get(abs) != "" { continue Outer } } // Delete only until the current values and not beyond. tmin, tmax := clampInterval(mint, maxt, h.series[ref].chunks[0].minTime, h.series[ref].head().maxTime) stones = append(stones, Stone{ref, intervals{{tmin, tmax}}}) } if p.Err() != nil { return p.Err() } if err := h.wal.LogDeletes(stones); err != nil { return err } for _, s := range stones { h.tombstones.add(s.ref, s.intervals[0]) } h.meta.Stats.NumTombstones = uint64(len(h.tombstones)) return nil } // Snapshot persists the current state of the headblock to the given directory. // TODO(gouthamve): Snapshot must be called when there are no active appenders. // This has been ensured by acquiring a Lock on DB.mtx, but this limitation should // be removed in the future. func (h *HeadBlock) Snapshot(snapshotDir string) error { if h.meta.Stats.NumSeries == 0 { return nil } entropy := rand.New(rand.NewSource(time.Now().UnixNano())) uid := ulid.MustNew(ulid.Now(), entropy) dir := filepath.Join(snapshotDir, uid.String()) tmp := dir + ".tmp" if err := os.RemoveAll(tmp); err != nil { return err } if err := os.MkdirAll(tmp, 0777); err != nil { return err } // Populate chunk and index files into temporary directory with // data of all blocks. chunkw, err := newChunkWriter(chunkDir(tmp)) if err != nil { return errors.Wrap(err, "open chunk writer") } indexw, err := newIndexWriter(tmp) if err != nil { return errors.Wrap(err, "open index writer") } meta, err := populateBlock([]Block{h}, indexw, chunkw) if err != nil { return errors.Wrap(err, "write snapshot") } meta.ULID = uid meta.MaxTime = h.highTimestamp if err = writeMetaFile(tmp, meta); err != nil { return errors.Wrap(err, "write merged meta") } if err = chunkw.Close(); err != nil { return errors.Wrap(err, "close chunk writer") } if err = indexw.Close(); err != nil { return errors.Wrap(err, "close index writer") } // Create an empty tombstones file. if err := writeTombstoneFile(tmp, newEmptyTombstoneReader()); err != nil { return errors.Wrap(err, "write new tombstones file") } // Block successfully written, make visible if err := renameFile(tmp, dir); err != nil { return errors.Wrap(err, "rename block dir") } return nil } // Dir returns the directory of the block. func (h *HeadBlock) Dir() string { return h.dir } // Index returns an IndexReader against the block. func (h *HeadBlock) Index() IndexReader { h.mtx.RLock() defer h.mtx.RUnlock() return &headIndexReader{HeadBlock: h, maxSeries: uint32(len(h.series) - 1)} } // Chunks returns a ChunkReader against the block. func (h *HeadBlock) Chunks() ChunkReader { return &headChunkReader{h} } // Querier returns a new Querier against the block for the range [mint, maxt]. func (h *HeadBlock) Querier(mint, maxt int64) Querier { h.mtx.RLock() if h.closed { panic(fmt.Sprintf("block %s already closed", h.dir)) } h.mtx.RUnlock() return &blockQuerier{ mint: mint, maxt: maxt, index: h.Index(), chunks: h.Chunks(), tombstones: h.Tombstones(), } } // Appender returns a new Appender against the head block. func (h *HeadBlock) Appender() Appender { atomic.AddUint64(&h.activeWriters, 1) h.mtx.RLock() if h.closed { panic(fmt.Sprintf("block %s already closed", h.dir)) } return &headAppender{HeadBlock: h, samples: getHeadAppendBuffer()} } // ActiveWriters returns true if the block has open write transactions. func (h *HeadBlock) ActiveWriters() int { return int(atomic.LoadUint64(&h.activeWriters)) } // HighTimestamp returns the highest inserted sample timestamp. func (h *HeadBlock) HighTimestamp() int64 { return atomic.LoadInt64(&h.highTimestamp) } var headPool = sync.Pool{} func getHeadAppendBuffer() []RefSample { b := headPool.Get() if b == nil { return make([]RefSample, 0, 512) } return b.([]RefSample) } func putHeadAppendBuffer(b []RefSample) { headPool.Put(b[:0]) } type headAppender struct { *HeadBlock newSeries []*hashedLabels newLabels []labels.Labels newHashes map[uint64]uint64 samples []RefSample highTimestamp int64 } type hashedLabels struct { ref uint64 hash uint64 labels labels.Labels } func (a *headAppender) Add(lset labels.Labels, t int64, v float64) (string, error) { if !a.inBounds(t) { return "", ErrOutOfBounds } hash := lset.Hash() refb := make([]byte, 8) // Series exists already in the block. if ms := a.get(hash, lset); ms != nil { binary.BigEndian.PutUint64(refb, uint64(ms.ref)) return string(refb), a.AddFast(string(refb), t, v) } // Series was added in this transaction previously. if ref, ok := a.newHashes[hash]; ok { binary.BigEndian.PutUint64(refb, ref) // XXX(fabxc): there's no fast path for multiple samples for the same new series // in the same transaction. We always return the invalid empty ref. It's has not // been a relevant use case so far and is not worth the trouble. return "", a.AddFast(string(refb), t, v) } // The series is completely new. if a.newSeries == nil { a.newHashes = map[uint64]uint64{} } // First sample for new series. ref := uint64(len(a.newSeries)) a.newSeries = append(a.newSeries, &hashedLabels{ ref: ref, hash: hash, labels: lset, }) // First bit indicates its a series created in this transaction. ref |= (1 << 63) a.newHashes[hash] = ref binary.BigEndian.PutUint64(refb, ref) return "", a.AddFast(string(refb), t, v) } func (a *headAppender) AddFast(ref string, t int64, v float64) error { if len(ref) != 8 { return errors.Wrap(ErrNotFound, "invalid ref length") } var ( refn = binary.BigEndian.Uint64(yoloBytes(ref)) id = (refn << 1) >> 1 inTx = refn&(1<<63) != 0 ) // Distinguish between existing series and series created in // this transaction. if inTx { if id > uint64(len(a.newSeries)-1) { return errors.Wrap(ErrNotFound, "transaction series ID too high") } // TODO(fabxc): we also have to validate here that the // sample sequence is valid. // We also have to revalidate it as we switch locks and create // the new series. } else if id > uint64(len(a.series)) { return errors.Wrap(ErrNotFound, "transaction series ID too high") } else { ms := a.series[id] if ms == nil { return errors.Wrap(ErrNotFound, "nil series") } // TODO(fabxc): memory series should be locked here already. // Only problem is release of locks in case of a rollback. c := ms.head() if !a.inBounds(t) { return ErrOutOfBounds } if t < c.maxTime { return ErrOutOfOrderSample } // We are allowing exact duplicates as we can encounter them in valid cases // like federation and erroring out at that time would be extremely noisy. if c.maxTime == t && math.Float64bits(ms.lastValue) != math.Float64bits(v) { return ErrAmendSample } } if t > a.highTimestamp { a.highTimestamp = t } a.samples = append(a.samples, RefSample{ Ref: refn, T: t, V: v, }) return nil } func (a *headAppender) createSeries() error { if len(a.newSeries) == 0 { return nil } a.newLabels = make([]labels.Labels, 0, len(a.newSeries)) base0 := len(a.series) a.mtx.RUnlock() defer a.mtx.RLock() a.mtx.Lock() defer a.mtx.Unlock() base1 := len(a.series) for _, l := range a.newSeries { // We switched locks and have to re-validate that the series were not // created by another goroutine in the meantime. if base1 > base0 { if ms := a.get(l.hash, l.labels); ms != nil { l.ref = uint64(ms.ref) continue } } // Series is still new. a.newLabels = append(a.newLabels, l.labels) l.ref = uint64(len(a.series)) a.create(l.hash, l.labels) } // Write all new series to the WAL. if err := a.wal.LogSeries(a.newLabels); err != nil { return errors.Wrap(err, "WAL log series") } return nil } func (a *headAppender) Commit() error { defer atomic.AddUint64(&a.activeWriters, ^uint64(0)) defer putHeadAppendBuffer(a.samples) defer a.mtx.RUnlock() if err := a.createSeries(); err != nil { return err } // We have to update the refs of samples for series we just created. for i := range a.samples { s := &a.samples[i] if s.Ref&(1<<63) != 0 { s.Ref = a.newSeries[(s.Ref<<1)>>1].ref } } // Write all new samples to the WAL and add them to the // in-mem database on success. if err := a.wal.LogSamples(a.samples); err != nil { return errors.Wrap(err, "WAL log samples") } total := uint64(len(a.samples)) for _, s := range a.samples { if !a.series[s.Ref].append(s.T, s.V) { total-- } } atomic.AddUint64(&a.meta.Stats.NumSamples, total) atomic.AddUint64(&a.meta.Stats.NumSeries, uint64(len(a.newSeries))) for { ht := a.HeadBlock.HighTimestamp() if a.highTimestamp <= ht { break } if atomic.CompareAndSwapInt64(&a.HeadBlock.highTimestamp, ht, a.highTimestamp) { break } } return nil } func (a *headAppender) Rollback() error { a.mtx.RUnlock() atomic.AddUint64(&a.activeWriters, ^uint64(0)) putHeadAppendBuffer(a.samples) return nil } type headChunkReader struct { *HeadBlock } // Chunk returns the chunk for the reference number. func (h *headChunkReader) Chunk(ref uint64) (chunks.Chunk, error) { h.mtx.RLock() defer h.mtx.RUnlock() si := ref >> 32 ci := (ref << 32) >> 32 c := &safeChunk{ Chunk: h.series[si].chunks[ci].chunk, s: h.series[si], i: int(ci), } return c, nil } type safeChunk struct { chunks.Chunk s *memSeries i int } func (c *safeChunk) Iterator() chunks.Iterator { c.s.mtx.RLock() defer c.s.mtx.RUnlock() return c.s.iterator(c.i) } // func (c *safeChunk) Appender() (chunks.Appender, error) { panic("illegal") } // func (c *safeChunk) Bytes() []byte { panic("illegal") } // func (c *safeChunk) Encoding() chunks.Encoding { panic("illegal") } type headIndexReader struct { *HeadBlock // Highest series that existed when the index reader was instantiated. maxSeries uint32 } func (h *headIndexReader) Symbols() (map[string]struct{}, error) { return h.symbols, nil } // LabelValues returns the possible label values func (h *headIndexReader) LabelValues(names ...string) (StringTuples, error) { h.mtx.RLock() defer h.mtx.RUnlock() if len(names) != 1 { return nil, errInvalidSize } var sl []string for s := range h.values[names[0]] { sl = append(sl, s) } sort.Strings(sl) return &stringTuples{l: len(names), s: sl}, nil } // Postings returns the postings list iterator for the label pair. func (h *headIndexReader) Postings(name, value string) (Postings, error) { h.mtx.RLock() defer h.mtx.RUnlock() return h.postings.get(term{name: name, value: value}), nil } func (h *headIndexReader) SortedPostings(p Postings) Postings { h.mtx.RLock() defer h.mtx.RUnlock() ep := make([]uint32, 0, 1024) for p.Next() { // Skip posting entries that include series added after we // instantiated the index reader. if p.At() > h.maxSeries { break } ep = append(ep, p.At()) } if err := p.Err(); err != nil { return errPostings{err: errors.Wrap(err, "expand postings")} } sort.Slice(ep, func(i, j int) bool { return labels.Compare(h.series[ep[i]].lset, h.series[ep[j]].lset) < 0 }) return newListPostings(ep) } // Series returns the series for the given reference. func (h *headIndexReader) Series(ref uint32, lbls *labels.Labels, chks *[]ChunkMeta) error { h.mtx.RLock() defer h.mtx.RUnlock() if ref > h.maxSeries { return ErrNotFound } s := h.series[ref] if s == nil { return ErrNotFound } *lbls = append((*lbls)[:0], s.lset...) s.mtx.RLock() defer s.mtx.RUnlock() *chks = (*chks)[:0] for i, c := range s.chunks { *chks = append(*chks, ChunkMeta{ MinTime: c.minTime, MaxTime: c.maxTime, Ref: (uint64(ref) << 32) | uint64(i), }) } return nil } func (h *headIndexReader) LabelIndices() ([][]string, error) { h.mtx.RLock() defer h.mtx.RUnlock() res := [][]string{} for s := range h.values { res = append(res, []string{s}) } return res, nil } // get retrieves the chunk with the hash and label set and creates // a new one if it doesn't exist yet. func (h *HeadBlock) get(hash uint64, lset labels.Labels) *memSeries { series := h.hashes[hash] for _, s := range series { if s.lset.Equals(lset) { return s } } return nil } func (h *HeadBlock) create(hash uint64, lset labels.Labels) *memSeries { s := newMemSeries(lset, uint32(len(h.series)), h.meta.MaxTime) // Allocate empty space until we can insert at the given index. h.series = append(h.series, s) h.hashes[hash] = append(h.hashes[hash], s) for _, l := range lset { valset, ok := h.values[l.Name] if !ok { valset = stringset{} h.values[l.Name] = valset } valset.set(l.Value) h.postings.add(s.ref, term{name: l.Name, value: l.Value}) h.symbols[l.Name] = struct{}{} h.symbols[l.Value] = struct{}{} } h.postings.add(s.ref, term{}) return s } type sample struct { t int64 v float64 } type memSeries struct { mtx sync.RWMutex ref uint32 lset labels.Labels chunks []*memChunk nextAt int64 // timestamp at which to cut the next chunk. maxt int64 // maximum timestamp for the series. lastValue float64 sampleBuf [4]sample app chunks.Appender // Current appender for the chunk. } func (s *memSeries) cut(mint int64) *memChunk { c := &memChunk{ chunk: chunks.NewXORChunk(), minTime: mint, maxTime: math.MinInt64, } s.chunks = append(s.chunks, c) app, err := c.chunk.Appender() if err != nil { panic(err) } s.app = app return c } func newMemSeries(lset labels.Labels, id uint32, maxt int64) *memSeries { s := &memSeries{ lset: lset, ref: id, maxt: maxt, nextAt: math.MinInt64, } return s } func (s *memSeries) append(t int64, v float64) bool { const samplesPerChunk = 120 s.mtx.Lock() defer s.mtx.Unlock() var c *memChunk if len(s.chunks) == 0 { c = s.cut(t) } c = s.head() if c.maxTime >= t { return false } if c.samples > samplesPerChunk/4 && t >= s.nextAt { c = s.cut(t) } s.app.Append(t, v) c.maxTime = t c.samples++ if c.samples == samplesPerChunk/4 { s.nextAt = computeChunkEndTime(c.minTime, c.maxTime, s.maxt) } s.lastValue = v s.sampleBuf[0] = s.sampleBuf[1] s.sampleBuf[1] = s.sampleBuf[2] s.sampleBuf[2] = s.sampleBuf[3] s.sampleBuf[3] = sample{t: t, v: v} return true } // computeChunkEndTime estimates the end timestamp based the beginning of a chunk, // its current timestamp and the upper bound up to which we insert data. // It assumes that the time range is 1/4 full. func computeChunkEndTime(start, cur, max int64) int64 { a := (max - start) / ((cur - start + 1) * 4) if a == 0 { return max } return start + (max-start)/a } func (s *memSeries) iterator(i int) chunks.Iterator { c := s.chunks[i] if i < len(s.chunks)-1 { return c.chunk.Iterator() } it := &memSafeIterator{ Iterator: c.chunk.Iterator(), i: -1, total: c.samples, buf: s.sampleBuf, } return it } func (s *memSeries) head() *memChunk { return s.chunks[len(s.chunks)-1] } type memChunk struct { chunk chunks.Chunk minTime, maxTime int64 samples int } type memSafeIterator struct { chunks.Iterator i int total int buf [4]sample } func (it *memSafeIterator) Next() bool { if it.i+1 >= it.total { return false } it.i++ if it.total-it.i > 4 { return it.Iterator.Next() } return true } func (it *memSafeIterator) At() (int64, float64) { if it.total-it.i > 4 { return it.Iterator.At() } s := it.buf[4-(it.total-it.i)] return s.t, s.v }