// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package storage import ( "fmt" "math" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/tsdb/chunkenc" ) // BufferedSeriesIterator wraps an iterator with a look-back buffer. type BufferedSeriesIterator struct { it chunkenc.Iterator buf *sampleRing delta int64 lastTime int64 valueType chunkenc.ValueType } // NewBuffer returns a new iterator that buffers the values within the time range // of the current element and the duration of delta before, initialized with an // empty iterator. Use Reset() to set an actual iterator to be buffered. func NewBuffer(delta int64) *BufferedSeriesIterator { return NewBufferIterator(chunkenc.NewNopIterator(), delta) } // NewBufferIterator returns a new iterator that buffers the values within the // time range of the current element and the duration of delta before. func NewBufferIterator(it chunkenc.Iterator, delta int64) *BufferedSeriesIterator { // TODO(codesome): based on encoding, allocate different buffer. bit := &BufferedSeriesIterator{ buf: newSampleRing(delta, 16), delta: delta, } bit.Reset(it) return bit } // Reset re-uses the buffer with a new iterator, resetting the buffered time // delta to its original value. func (b *BufferedSeriesIterator) Reset(it chunkenc.Iterator) { b.it = it b.lastTime = math.MinInt64 b.buf.reset() b.buf.delta = b.delta b.valueType = it.Next() } // ReduceDelta lowers the buffered time delta, for the current SeriesIterator only. func (b *BufferedSeriesIterator) ReduceDelta(delta int64) bool { return b.buf.reduceDelta(delta) } // PeekBack returns the nth previous element of the iterator. If there is none buffered, // ok is false. func (b *BufferedSeriesIterator) PeekBack(n int) ( t int64, v float64, h *histogram.Histogram, fh *histogram.FloatHistogram, ok bool, ) { s, ok := b.buf.nthLast(n) return s.t, s.v, s.h, s.fh, ok } // Buffer returns an iterator over the buffered data. Invalidates previously // returned iterators. func (b *BufferedSeriesIterator) Buffer() chunkenc.Iterator { return b.buf.iterator() } // Seek advances the iterator to the element at time t or greater. func (b *BufferedSeriesIterator) Seek(t int64) chunkenc.ValueType { t0 := t - b.buf.delta // If the delta would cause us to seek backwards, preserve the buffer // and just continue regular advancement while filling the buffer on the way. if b.valueType != chunkenc.ValNone && t0 > b.lastTime { b.buf.reset() b.valueType = b.it.Seek(t0) switch b.valueType { case chunkenc.ValNone: return chunkenc.ValNone case chunkenc.ValFloat: b.lastTime, _ = b.At() case chunkenc.ValHistogram: b.lastTime, _ = b.AtHistogram() case chunkenc.ValFloatHistogram: b.lastTime, _ = b.AtFloatHistogram() default: panic(fmt.Errorf("BufferedSeriesIterator: unknown value type %v", b.valueType)) } } if b.lastTime >= t { return b.valueType } for { if b.valueType = b.Next(); b.valueType == chunkenc.ValNone || b.lastTime >= t { return b.valueType } } } // Next advances the iterator to the next element. func (b *BufferedSeriesIterator) Next() chunkenc.ValueType { // Add current element to buffer before advancing. switch b.valueType { case chunkenc.ValNone: return chunkenc.ValNone case chunkenc.ValFloat: t, v := b.it.At() b.buf.add(sample{t: t, v: v}) case chunkenc.ValHistogram: t, h := b.it.AtHistogram() b.buf.add(sample{t: t, h: h}) case chunkenc.ValFloatHistogram: t, fh := b.it.AtFloatHistogram() b.buf.add(sample{t: t, fh: fh}) default: panic(fmt.Errorf("BufferedSeriesIterator: unknown value type %v", b.valueType)) } b.valueType = b.it.Next() if b.valueType != chunkenc.ValNone { b.lastTime = b.AtT() } return b.valueType } // At returns the current float element of the iterator. func (b *BufferedSeriesIterator) At() (int64, float64) { return b.it.At() } // AtHistogram returns the current histogram element of the iterator. func (b *BufferedSeriesIterator) AtHistogram() (int64, *histogram.Histogram) { return b.it.AtHistogram() } // AtFloatHistogram returns the current float-histogram element of the iterator. func (b *BufferedSeriesIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) { return b.it.AtFloatHistogram() } // AtT returns the current timestamp of the iterator. func (b *BufferedSeriesIterator) AtT() int64 { return b.it.AtT() } // Err returns the last encountered error. func (b *BufferedSeriesIterator) Err() error { return b.it.Err() } // TODO(beorn7): Consider having different sample types for different value types. type sample struct { t int64 v float64 h *histogram.Histogram fh *histogram.FloatHistogram } func (s sample) T() int64 { return s.t } func (s sample) V() float64 { return s.v } func (s sample) H() *histogram.Histogram { return s.h } func (s sample) FH() *histogram.FloatHistogram { return s.fh } func (s sample) Type() chunkenc.ValueType { switch { case s.h != nil: return chunkenc.ValHistogram case s.fh != nil: return chunkenc.ValFloatHistogram default: return chunkenc.ValFloat } } type sampleRing struct { delta int64 buf []sample // lookback buffer i int // position of most recent element in ring buffer f int // position of first element in ring buffer l int // number of elements in buffer it sampleRingIterator } func newSampleRing(delta int64, sz int) *sampleRing { r := &sampleRing{delta: delta, buf: make([]sample, sz)} r.reset() return r } func (r *sampleRing) reset() { r.l = 0 r.i = -1 r.f = 0 } // Returns the current iterator. Invalidates previously returned iterators. func (r *sampleRing) iterator() chunkenc.Iterator { r.it.r = r r.it.i = -1 return &r.it } type sampleRingIterator struct { r *sampleRing i int t int64 v float64 h *histogram.Histogram fh *histogram.FloatHistogram } func (it *sampleRingIterator) Next() chunkenc.ValueType { it.i++ if it.i >= it.r.l { return chunkenc.ValNone } s := it.r.at(it.i) it.t = s.t switch { case s.h != nil: it.h = s.h return chunkenc.ValHistogram case s.fh != nil: it.fh = s.fh return chunkenc.ValFloatHistogram default: it.v = s.v return chunkenc.ValFloat } } func (it *sampleRingIterator) Seek(int64) chunkenc.ValueType { return chunkenc.ValNone } func (it *sampleRingIterator) Err() error { return nil } func (it *sampleRingIterator) At() (int64, float64) { return it.t, it.v } func (it *sampleRingIterator) AtHistogram() (int64, *histogram.Histogram) { return it.t, it.h } func (it *sampleRingIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) { if it.fh == nil { return it.t, it.h.ToFloat() } return it.t, it.fh } func (it *sampleRingIterator) AtT() int64 { return it.t } func (r *sampleRing) at(i int) sample { j := (r.f + i) % len(r.buf) return r.buf[j] } // add adds a sample to the ring buffer and frees all samples that fall // out of the delta range. func (r *sampleRing) add(s sample) { l := len(r.buf) // Grow the ring buffer if it fits no more elements. if l == r.l { buf := make([]sample, 2*l) copy(buf[l+r.f:], r.buf[r.f:]) copy(buf, r.buf[:r.f]) r.buf = buf r.i = r.f r.f += l l = 2 * l } else { r.i++ if r.i >= l { r.i -= l } } r.buf[r.i] = s r.l++ // Free head of the buffer of samples that just fell out of the range. tmin := s.t - r.delta for r.buf[r.f].t < tmin { r.f++ if r.f >= l { r.f -= l } r.l-- } } // reduceDelta lowers the buffered time delta, dropping any samples that are // out of the new delta range. func (r *sampleRing) reduceDelta(delta int64) bool { if delta > r.delta { return false } r.delta = delta if r.l == 0 { return true } // Free head of the buffer of samples that just fell out of the range. l := len(r.buf) tmin := r.buf[r.i].t - delta for r.buf[r.f].t < tmin { r.f++ if r.f >= l { r.f -= l } r.l-- } return true } // nthLast returns the nth most recent element added to the ring. func (r *sampleRing) nthLast(n int) (sample, bool) { if n > r.l { return sample{}, false } return r.at(r.l - n), true } func (r *sampleRing) samples() []sample { res := make([]sample, r.l) k := r.f + r.l var j int if k > len(r.buf) { k = len(r.buf) j = r.l - k + r.f } n := copy(res, r.buf[r.f:k]) copy(res[n:], r.buf[:j]) return res }