package tsdb import ( "fmt" "math" "math/rand" "os" "sort" "sync" "sync/atomic" "time" "github.com/bradfitz/slice" "github.com/fabxc/tsdb/chunks" "github.com/fabxc/tsdb/labels" "github.com/go-kit/kit/log" "github.com/pkg/errors" ) var ( // ErrNotFound is returned if a looked up resource was not found. ErrNotFound = fmt.Errorf("not found") // ErrOutOfOrderSample is returned if an appended sample has a // timestamp larger than the most recent sample. ErrOutOfOrderSample = errors.New("out of order sample") // ErrAmendSample is returned if an appended sample has the same timestamp // as the most recent sample but a different value. ErrAmendSample = errors.New("amending sample") // ErrOutOfBounds is returned if an appended sample is out of the // writable time range. ErrOutOfBounds = errors.New("out of bounds") ) // headBlock handles reads and writes of time series data within a time window. type headBlock struct { mtx sync.RWMutex dir string generation uint8 wal *WAL activeWriters uint64 // descs holds all chunk descs for the head block. Each chunk implicitly // is assigned the index as its ID. series []*memSeries // mapping maps a series ID to its position in an ordered list // of all series. The orderDirty flag indicates that it has gone stale. mapper *positionMapper // hashes contains a collision map of label set hashes of chunks // to their chunk descs. hashes map[uint64][]*memSeries values map[string]stringset // label names to possible values postings *memPostings // postings lists for terms metamtx sync.RWMutex meta BlockMeta } func createHeadBlock(dir string, seq int, l log.Logger, mint, maxt int64) (*headBlock, error) { if err := os.MkdirAll(dir, 0755); err != nil { return nil, err } if err := writeMetaFile(dir, &BlockMeta{ Sequence: seq, MinTime: mint, MaxTime: maxt, }); err != nil { return nil, err } return openHeadBlock(dir, l) } // openHeadBlock creates a new empty head block. func openHeadBlock(dir string, l log.Logger) (*headBlock, error) { wal, err := OpenWAL(dir, log.NewContext(l).With("component", "wal"), 5*time.Second) if err != nil { return nil, err } meta, err := readMetaFile(dir) if err != nil { return nil, err } h := &headBlock{ dir: dir, wal: wal, series: []*memSeries{}, hashes: map[uint64][]*memSeries{}, values: map[string]stringset{}, postings: &memPostings{m: make(map[term][]uint32)}, mapper: newPositionMapper(nil), meta: *meta, } // Replay contents of the write ahead log. if err = wal.ReadAll(&walHandler{ series: func(lset labels.Labels) error { h.create(lset.Hash(), lset) h.meta.Stats.NumSeries++ return nil }, sample: func(s refdSample) error { h.series[s.ref].append(s.t, s.v) if !h.inBounds(s.t) { return ErrOutOfBounds } h.meta.Stats.NumSamples++ return nil }, }); err != nil { return nil, err } h.updateMapping() return h, nil } // inBounds returns true if the given timestamp is within the valid // time bounds of the block. func (h *headBlock) inBounds(t int64) bool { return t >= h.meta.MinTime && t <= h.meta.MaxTime } // Close syncs all data and closes underlying resources of the head block. func (h *headBlock) Close() error { if err := writeMetaFile(h.dir, &h.meta); err != nil { return err } return h.wal.Close() } func (h *headBlock) Meta() BlockMeta { h.metamtx.RLock() defer h.metamtx.RUnlock() return h.meta } func (h *headBlock) Dir() string { return h.dir } func (h *headBlock) Persisted() bool { return false } func (h *headBlock) Index() IndexReader { return &headIndexReader{h} } func (h *headBlock) Series() SeriesReader { return &headSeriesReader{h} } func (h *headBlock) Appender() Appender { atomic.AddUint64(&h.activeWriters, 1) h.mtx.RLock() return &headAppender{headBlock: h, samples: getHeadAppendBuffer()} } var headPool = sync.Pool{} func getHeadAppendBuffer() []refdSample { b := headPool.Get() if b == nil { return make([]refdSample, 0, 512) } return b.([]refdSample) } func putHeadAppendBuffer(b []refdSample) { headPool.Put(b[:0]) } type headAppender struct { *headBlock newSeries map[uint64]hashedLabels newHashes map[uint64]uint64 refmap map[uint64]uint64 newLabels []labels.Labels samples []refdSample } type hashedLabels struct { hash uint64 labels labels.Labels } type refdSample struct { ref uint64 t int64 v float64 } func (a *headAppender) Add(lset labels.Labels, t int64, v float64) (uint64, error) { return a.hashedAdd(lset.Hash(), lset, t, v) } func (a *headAppender) hashedAdd(hash uint64, lset labels.Labels, t int64, v float64) (uint64, error) { if ms := a.get(hash, lset); ms != nil { return uint64(ms.ref), a.AddFast(uint64(ms.ref), t, v) } if ref, ok := a.newHashes[hash]; ok { return uint64(ref), a.AddFast(uint64(ref), t, v) } // We only know the actual reference after committing. We generate an // intermediate reference only valid for this batch. // It is indicated by the the LSB of the 4th byte being set to 1. // We use a random ID to avoid collisions when new series are created // in two subsequent batches. // TODO(fabxc): Provide method for client to determine whether a ref // is valid beyond the current transaction. ref := uint64(rand.Int31()) | (1 << 32) if a.newSeries == nil { a.newSeries = map[uint64]hashedLabels{} a.newHashes = map[uint64]uint64{} a.refmap = map[uint64]uint64{} } a.newSeries[ref] = hashedLabels{hash: hash, labels: lset} a.newHashes[hash] = ref return ref, a.AddFast(ref, t, v) } func (a *headAppender) AddFast(ref uint64, t int64, v float64) error { // We only own the last 5 bytes of the reference. Anything before is // used by higher-order appenders. We erase it to avoid issues. ref = (ref << 24) >> 24 // Distinguish between existing series and series created in // this transaction. if ref&(1<<32) != 0 { if _, ok := a.newSeries[ref]; !ok { return ErrNotFound } // TODO(fabxc): we also have to validate here that the // sample sequence is valid. // We also have to revalidate it as we switch locks an create // the new series. } else { ms := a.series[int(ref)] if ms == nil { return ErrNotFound } // TODO(fabxc): memory series should be locked here already. // Only problem is release of locks in case of a rollback. c := ms.head() if !a.inBounds(t) { return ErrOutOfBounds } if t < c.maxTime { return ErrOutOfOrderSample } if c.maxTime == t && ms.lastValue != v { return ErrAmendSample } } a.samples = append(a.samples, refdSample{ ref: ref, t: t, v: v, }) return nil } func (a *headAppender) createSeries() { if len(a.newSeries) == 0 { return } a.newLabels = make([]labels.Labels, 0, len(a.newSeries)) base0 := len(a.series) a.mtx.RUnlock() a.mtx.Lock() base1 := len(a.series) for ref, l := range a.newSeries { // We switched locks and have to re-validate that the series were not // created by another goroutine in the meantime. if base1 > base0 { if ms := a.get(l.hash, l.labels); ms != nil { a.refmap[ref] = uint64(ms.ref) continue } } // Series is still new. a.newLabels = append(a.newLabels, l.labels) a.refmap[ref] = uint64(len(a.series)) a.create(l.hash, l.labels) } a.mtx.Unlock() a.mtx.RLock() } func (a *headAppender) Commit() error { defer atomic.AddUint64(&a.activeWriters, ^uint64(0)) defer putHeadAppendBuffer(a.samples) a.createSeries() for i := range a.samples { s := &a.samples[i] if s.ref&(1<<32) > 0 { s.ref = a.refmap[s.ref] } } // Write all new series and samples to the WAL and add it to the // in-mem database on success. if err := a.wal.Log(a.newLabels, a.samples); err != nil { a.mtx.RUnlock() return err } var ( total = uint64(len(a.samples)) mint = int64(math.MaxInt64) maxt = int64(math.MinInt64) ) for _, s := range a.samples { if !a.series[s.ref].append(s.t, s.v) { total-- } if s.t < mint { mint = s.t } if s.t > maxt { maxt = s.t } } a.mtx.RUnlock() a.metamtx.Lock() defer a.metamtx.Unlock() a.meta.Stats.NumSamples += total a.meta.Stats.NumSeries += uint64(len(a.newSeries)) return nil } func (a *headAppender) Rollback() error { a.mtx.RUnlock() atomic.AddUint64(&a.activeWriters, ^uint64(0)) putHeadAppendBuffer(a.samples) return nil } type headSeriesReader struct { *headBlock } // Chunk returns the chunk for the reference number. func (h *headSeriesReader) Chunk(ref uint32) (chunks.Chunk, error) { h.mtx.RLock() defer h.mtx.RUnlock() c := &safeChunk{ Chunk: h.series[ref>>8].chunks[int((ref<<24)>>24)].chunk, s: h.series[ref>>8], i: int((ref << 24) >> 24), } return c, nil } type safeChunk struct { chunks.Chunk s *memSeries i int } func (c *safeChunk) Iterator() chunks.Iterator { c.s.mtx.RLock() defer c.s.mtx.RUnlock() return c.s.iterator(c.i) } // func (c *safeChunk) Appender() (chunks.Appender, error) { panic("illegal") } // func (c *safeChunk) Bytes() []byte { panic("illegal") } // func (c *safeChunk) Encoding() chunks.Encoding { panic("illegal") } type headIndexReader struct { *headBlock } // LabelValues returns the possible label values func (h *headIndexReader) LabelValues(names ...string) (StringTuples, error) { h.mtx.RLock() defer h.mtx.RUnlock() if len(names) != 1 { return nil, errInvalidSize } var sl []string for s := range h.values[names[0]] { sl = append(sl, s) } sort.Strings(sl) return &stringTuples{l: len(names), s: sl}, nil } // Postings returns the postings list iterator for the label pair. func (h *headIndexReader) Postings(name, value string) (Postings, error) { h.mtx.RLock() defer h.mtx.RUnlock() return h.postings.get(term{name: name, value: value}), nil } // Series returns the series for the given reference. func (h *headIndexReader) Series(ref uint32) (labels.Labels, []ChunkMeta, error) { h.mtx.RLock() defer h.mtx.RUnlock() if int(ref) >= len(h.series) { return nil, nil, ErrNotFound } s := h.series[ref] metas := make([]ChunkMeta, 0, len(s.chunks)) s.mtx.RLock() defer s.mtx.RUnlock() for i, c := range s.chunks { metas = append(metas, ChunkMeta{ MinTime: c.minTime, MaxTime: c.maxTime, Ref: (ref << 8) | uint32(i), }) } return s.lset, metas, nil } func (h *headIndexReader) LabelIndices() ([][]string, error) { h.mtx.RLock() defer h.mtx.RUnlock() res := [][]string{} for s := range h.values { res = append(res, []string{s}) } return res, nil } // get retrieves the chunk with the hash and label set and creates // a new one if it doesn't exist yet. func (h *headBlock) get(hash uint64, lset labels.Labels) *memSeries { series := h.hashes[hash] for _, s := range series { if s.lset.Equals(lset) { return s } } return nil } func (h *headBlock) create(hash uint64, lset labels.Labels) *memSeries { s := &memSeries{ lset: lset, ref: uint32(len(h.series)), } // Allocate empty space until we can insert at the given index. h.series = append(h.series, s) h.hashes[hash] = append(h.hashes[hash], s) for _, l := range lset { valset, ok := h.values[l.Name] if !ok { valset = stringset{} h.values[l.Name] = valset } valset.set(l.Value) h.postings.add(s.ref, term{name: l.Name, value: l.Value}) } h.postings.add(s.ref, term{}) return s } func (h *headBlock) fullness() float64 { h.metamtx.RLock() defer h.metamtx.RUnlock() return float64(h.meta.Stats.NumSamples) / float64(h.meta.Stats.NumSeries+1) / 250 } func (h *headBlock) updateMapping() { h.mtx.RLock() if h.mapper.sortable != nil && h.mapper.Len() == len(h.series) { h.mtx.RUnlock() return } series := make([]*memSeries, len(h.series)) copy(series, h.series) h.mtx.RUnlock() s := slice.SortInterface(series, func(i, j int) bool { return labels.Compare(series[i].lset, series[j].lset) < 0 }) h.mapper.update(s) } // remapPostings changes the order of the postings from their ID to the ordering // of the series they reference. // Returned postings have no longer monotonic IDs and MUST NOT be used for regular // postings set operations, i.e. intersect and merge. func (h *headBlock) remapPostings(p Postings) Postings { list, err := expandPostings(p) if err != nil { return errPostings{err: err} } h.mapper.mtx.Lock() defer h.mapper.mtx.Unlock() h.updateMapping() h.mapper.Sort(list) return newListPostings(list) } type memSeries struct { mtx sync.RWMutex ref uint32 lset labels.Labels chunks []*memChunk lastValue float64 sampleBuf [4]sample app chunks.Appender // Current appender for the chunkdb. } func (s *memSeries) cut() *memChunk { c := &memChunk{ chunk: chunks.NewXORChunk(), maxTime: math.MinInt64, } s.chunks = append(s.chunks, c) app, err := c.chunk.Appender() if err != nil { panic(err) } s.app = app return c } func (s *memSeries) append(t int64, v float64) bool { var c *memChunk if s.app == nil || s.head().samples > 2000 { c = s.cut() c.minTime = t } else { c = s.head() // Skip duplicate samples. if c.maxTime == t && s.lastValue != v { return false } } s.app.Append(t, v) c.maxTime = t c.samples++ s.lastValue = v s.sampleBuf[0] = s.sampleBuf[1] s.sampleBuf[1] = s.sampleBuf[2] s.sampleBuf[2] = s.sampleBuf[3] s.sampleBuf[3] = sample{t: t, v: v} return true } func (s *memSeries) iterator(i int) chunks.Iterator { c := s.chunks[i] if i < len(s.chunks)-1 { return c.chunk.Iterator() } it := &memSafeIterator{ Iterator: c.chunk.Iterator(), i: -1, total: c.samples, buf: s.sampleBuf, } return it } func (s *memSeries) head() *memChunk { return s.chunks[len(s.chunks)-1] } type memChunk struct { chunk chunks.Chunk minTime, maxTime int64 samples int } type memSafeIterator struct { chunks.Iterator i int total int buf [4]sample } func (it *memSafeIterator) Next() bool { if it.i+1 >= it.total { return false } it.i++ if it.total-it.i > 4 { return it.Iterator.Next() } return true } func (it *memSafeIterator) At() (int64, float64) { if it.total-it.i > 4 { return it.Iterator.At() } s := it.buf[4-(it.total-it.i)] return s.t, s.v } // positionMapper stores a position mapping from unsorted to // sorted indices of a sortable collection. type positionMapper struct { mtx sync.RWMutex sortable sort.Interface iv, fw []int } func newPositionMapper(s sort.Interface) *positionMapper { m := &positionMapper{} if s != nil { m.update(s) } return m } func (m *positionMapper) Len() int { return m.sortable.Len() } func (m *positionMapper) Less(i, j int) bool { return m.sortable.Less(i, j) } func (m *positionMapper) Swap(i, j int) { m.sortable.Swap(i, j) m.iv[i], m.iv[j] = m.iv[j], m.iv[i] } func (m *positionMapper) Sort(l []uint32) { slice.Sort(l, func(i, j int) bool { return m.fw[l[i]] < m.fw[l[j]] }) } func (m *positionMapper) update(s sort.Interface) { m.sortable = s m.iv = make([]int, s.Len()) m.fw = make([]int, s.Len()) for i := range m.iv { m.iv[i] = i } sort.Sort(m) for i, k := range m.iv { m.fw[k] = i } }