Commit Graph

10 Commits

Author SHA1 Message Date
Ganesh Vernekar
5de7d15879
Consistent naming and better names for fields in TSDB format docs (#8077)
Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>
2020-10-19 14:27:19 +05:30
Ganesh Vernekar
50ae4e298b
Fix magic number in docs (#7998)
Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>
2020-10-01 15:05:01 +05:30
Simon Pasquier
d634785944
tsdb/docs: fix head chunks directory + link from README (#7309)
Signed-off-by: Simon Pasquier <spasquie@redhat.com>
2020-06-17 20:38:21 +05:30
Ganesh Vernekar
d4b9fe801f
M-map full chunks of Head from disk (#6679)
When appending to the head and a chunk is full it is flushed to the disk and m-mapped (memory mapped) to free up memory

Prom startup now happens in these stages
 - Iterate the m-maped chunks from disk and keep a map of series reference to its slice of mmapped chunks.
- Iterate the WAL as usual. Whenever we create a new series, look for it's mmapped chunks in the map created before and add it to that series.

If a head chunk is corrupted the currpted one and all chunks after that are deleted and the data after the corruption is recovered from the existing WAL which means that a corruption in m-mapped files results in NO data loss.

[Mmaped chunks format](https://github.com/prometheus/prometheus/blob/master/tsdb/docs/format/head_chunks.md)  - main difference is that the chunk for mmaping now also includes series reference because there is no index for mapping series to chunks.
[The block chunks](https://github.com/prometheus/prometheus/blob/master/tsdb/docs/format/chunks.md) are accessed from the index which includes the offsets for the chunks in the chunks file - example - chunks of series ID have offsets 200, 500 etc in the chunk files.
In case of mmaped chunks, the offsets are stored in memory and accessed from that. During WAL replay, these offsets are restored by iterating all m-mapped chunks as stated above by matching the series id present in the chunk header and offset of that chunk in that file.

**Prombench results**

_WAL Replay_

1h Wal reply time
30% less wal reply time - 4m31 vs 3m36
2h Wal reply time
20% less wal reply time - 8m16 vs 7m

_Memory During WAL Replay_

High Churn:
10-15% less RAM -  32gb vs 28gb
20% less RAM after compaction 34gb vs 27gb
No Churn:
20-30% less RAM -  23gb vs 18gb
40% less RAM after compaction 32.5gb vs 20gb

Screenshots are in [this comment](https://github.com/prometheus/prometheus/pull/6679#issuecomment-621678932)


Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>
2020-05-06 21:00:00 +05:30
Ganesh Vernekar
e50fdbc70c
Live m-mapping of chunks on disk (#6830)
* Live m-mapping of chunks on disk

Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>

* Fix review comments

Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>

* Fix review comments Part 2

Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>

* Fix review comments Part 3

Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>

* Fix review comments Part 4

Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>

* Attempt to fix windows bug

Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>
2020-03-19 22:03:44 +05:30
Brian Brazil
d782387f81
Stream symbols during compaction. (#6468)
Rather than buffer up symbols in RAM, do it one by one
during compaction. Then use the reader's symbol handling
for symbol lookups during the rest of the index write.

There is some slowdown in compaction, due to having to look through a file
rather than a hash lookup. This is noise to the overall cost of compacting
series with thousands of samples though.

benchmark                                                                                   old ns/op       new ns/op       delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4        539917175       675341565       +25.08%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4       2441815993      2477453524      +1.46%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4       3978543559      3922909687      -1.40%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4       8430219716      8586610007      +1.86%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4      1786424591      1909552782      +6.89%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4     5328998202      6020839950      +12.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4     10085059958     11085278690     +9.92%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4     25497010155     27018079806     +5.97%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4                               2427391406      2817217987      +16.06%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4                               2592965497      2538805050      -2.09%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4                               2437388343      2668012858      +9.46%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4                               2317095324      2787423966      +20.30%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4                               2600239857      2096973860      -19.35%

benchmark                                                                                   old allocs     new allocs     delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4        500851         470794         -6.00%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4       821527         791451         -3.66%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4       1141562        1111508        -2.63%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4       2141576        2111504        -1.40%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4      871466         841424         -3.45%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4     1941428        1911415        -1.55%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4     3071573        3041510        -0.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4     6771648        6741509        -0.45%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4                               731493         824888         +12.77%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4                               793918         887311         +11.76%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4                               811842         905204         +11.50%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4                               832244         925081         +11.16%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4                               921553         1019162        +10.59%

benchmark                                                                                   old bytes      new bytes      delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4        40532648       35698276       -11.93%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4       60340216       53409568       -11.49%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4       81087336       72065552       -11.13%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4       142485576      120878544      -15.16%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4      208661368      203831136      -2.31%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4     347345904      340484696      -1.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4     585185856      576244648      -1.53%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4     1357641792     1358966528     +0.10%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4                               126486664      119666744      -5.39%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4                               122323192      115117224      -5.89%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4                               126404504      119469864      -5.49%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4                               119047832      112230408      -5.73%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4                               136576016      116634800      -14.60%

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-17 19:49:54 +00:00
Brian Brazil
48d25e6fe7 Reduce memory used by postings offset table.
Rather than keeping the offset of each postings list, instead
keep the nth offset of the offset of the posting list. As postings
list offsets have always been sorted, we can then get to the closest
entry before the one we want an iterate forwards.

I haven't done much tuning on the 32 number, it was chosen to try
not to read through more than a 4k page of data.

Switch to a bulk interface for fetching postings. Use it to avoid having
to re-read parts of the posting offset table when querying lots of it.

For a index with what BenchmarkHeadPostingForMatchers uses RAM
for r.postings drops from 3.79MB to 80.19kB or about 48x.
Bytes allocated go down by 30%, and suprisingly CPU usage drops by
4-6% for typical queries too.

benchmark                                                               old ns/op      new ns/op      delta
BenchmarkPostingsForMatchers/Block/n="1"-4                              35231          36673          +4.09%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4                      563380         540627         -4.04%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4                      536782         534186         -0.48%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4                     533990         541550         +1.42%
BenchmarkPostingsForMatchers/Block/i=~".*"-4                            113374598      117969608      +4.05%
BenchmarkPostingsForMatchers/Block/i=~".+"-4                            146329884      139651442      -4.56%
BenchmarkPostingsForMatchers/Block/i=~""-4                              50346510       44961127       -10.70%
BenchmarkPostingsForMatchers/Block/i!=""-4                              41261550       35356165       -14.31%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4              112544418      116904010      +3.87%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4       112487086      116864918      +3.89%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4                        41094758       35457904       -13.72%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4                41906372       36151473       -13.73%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4              147262414      140424800      -4.64%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4             28615629       27872072       -2.60%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4       147117177      140462403      -4.52%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4     175096826      167902298      -4.11%

benchmark                                                               old allocs     new allocs     delta
BenchmarkPostingsForMatchers/Block/n="1"-4                              4              6              +50.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4                      7              11             +57.14%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4                      7              11             +57.14%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4                     15             17             +13.33%
BenchmarkPostingsForMatchers/Block/i=~".*"-4                            100010         100012         +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4                            200069         200040         -0.01%
BenchmarkPostingsForMatchers/Block/i=~""-4                              200072         200045         -0.01%
BenchmarkPostingsForMatchers/Block/i!=""-4                              200070         200041         -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4              100013         100017         +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4       100017         100023         +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4                        200073         200046         -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4                200075         200050         -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4              200074         200049         -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4             111165         111150         -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4       200078         200055         -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4     311282         311238         -0.01%

benchmark                                                               old bytes     new bytes     delta
BenchmarkPostingsForMatchers/Block/n="1"-4                              264           296           +12.12%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4                      360           424           +17.78%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4                      360           424           +17.78%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4                     520           552           +6.15%
BenchmarkPostingsForMatchers/Block/i=~".*"-4                            1600461       1600482       +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4                            24900801      17259077      -30.69%
BenchmarkPostingsForMatchers/Block/i=~""-4                              24900836      17259151      -30.69%
BenchmarkPostingsForMatchers/Block/i!=""-4                              24900760      17259048      -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4              1600557       1600621       +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4       1600717       1600813       +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4                        24900856      17259176      -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4                24900952      17259304      -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4              24900993      17259333      -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4             3788311       3142630       -17.04%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4       24901137      17259509      -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4     28693086      20405680      -28.88%

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-11 19:59:31 +00:00
yuxiaobo
7850f1b35c new world spelling mistake
Signed-off-by: yuxiaobo <yuxiaobogo@163.com>
2019-10-17 19:09:54 +08:00
zhulongcheng
e081406b5b tsdb: update chunks format (#6033)
Signed-off-by: zhulongcheng <zhulongcheng.dev@gmail.com>
2019-09-19 13:56:32 +03:00
Ganesh Vernekar
7cf09b0395
Moving tsdb into its own subdirectory
Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>
2019-08-13 13:58:49 +05:30