Problem description:
====================
If a rule evaluation referencing a metric/timeseries M happens at a time
when M doesn't have a memory timeseries yet, looking up the fingerprint
for M (via TieredStorage.GetMetricForFingerprint()) will create a new
Metric object for M which gets both: a) attached to a new empty memory
timeseries (so we don't have to ask disk for the Metric's fingerprint
next time), and b) returned to the rule evaluation layer. However, the
rule evaluation layer replaces the name label (and possibly other
labels) of the metric with the name of the recorded rule. Since both
the rule evaluator and the memory storage share a reference to the same
Metric object, the original memory timeseries will now also be
incorrectly renamed.
Fix:
====
Instead of storing a reference to a shared metric object, take a copy of
the object when creating an empty memory timeseries for caching
purposes.
Change-Id: I9f2172696c16c10b377e6708553a46ef29390f1e
The storage itself should be closed before any of the objects passed into it
are closed (otherwise closing the storage can randomly freeze). Defers are
executed in reverse order, so closing the storage should be the last of the
defer statements.
Change-Id: Id920318b876f5b94767ed48c81221b3456770620
This used to work with Go 1.1, but only because of a compiler bug.
The bug is fixed in Go 1.2, so we have to fix our code now.
Change-Id: I5a9f3a15878afd750e848be33e90b05f3aa055e1
Prometheus needs long-term storage. Since we don't have enough resources
to build our own timeseries storage from scratch ontop of Riak,
Cassandra or a similar distributed datastore at the moment, we're
planning on using OpenTSDB as long-term storage for Prometheus. It's
data model is roughly compatible with that of Prometheus, with some
caveats.
As a first step, this adds write-only replication from Prometheus to
OpenTSDB, with the following things worth noting:
1)
I tried to keep the integration lightweight, meaning that anything
related to OpenTSDB is isolated to its own package and only main knows
about it (essentially it tees all samples to both the existing storage
and TSDB). It's not touching the existing TieredStorage at all to avoid
more complexity in that area. This might change in the future,
especially if we decide to implement a read path for OpenTSDB through
Prometheus as well.
2)
Backpressure while sending to OpenTSDB is handled by simply dropping
samples on the floor when the in-memory queue of samples destined for
OpenTSDB runs full. Prometheus also only attempts to send samples once,
rather than implementing a complex retry algorithm. Thus, replication to
OpenTSDB is best-effort for now. If needed, this may be extended in the
future.
3)
Samples are sent in batches of limited size to OpenTSDB. The optimal
batch size, timeout parameters, etc. may need to be adjusted in the
future.
4)
OpenTSDB has different rules for legal characters in tag (label) values.
While Prometheus allows any characters in label values, OpenTSDB limits
them to a to z, A to Z, 0 to 9, -, _, . and /. Currently any illegal
characters in Prometheus label values are simply replaced by an
underscore. Especially when integrating OpenTSDB with the read path in
Prometheus, we'll need to reconsider this: either we'll need to
introduce the same limitations for Prometheus labels or escape/encode
illegal characters in OpenTSDB in such a way that they are fully
decodable again when reading through Prometheus, so that corresponding
timeseries in both systems match in their labelsets.
Change-Id: I8394c9c55dbac3946a0fa497f566d5e6e2d600b5
So far we've been using Go's native time.Time for anything related to sample
timestamps. Since the range of time.Time is much bigger than what we need, this
has created two problems:
- there could be time.Time values which were out of the range/precision of the
time type that we persist to disk, therefore causing incorrectly ordered keys.
One bug caused by this was:
https://github.com/prometheus/prometheus/issues/367
It would be good to use a timestamp type that's more closely aligned with
what the underlying storage supports.
- sizeof(time.Time) is 192, while Prometheus should be ok with a single 64-bit
Unix timestamp (possibly even a 32-bit one). Since we store samples in large
numbers, this seriously affects memory usage. Furthermore, copying/working
with the data will be faster if it's smaller.
*MEMORY USAGE RESULTS*
Initial memory usage comparisons for a running Prometheus with 1 timeseries and
100,000 samples show roughly a 13% decrease in total (VIRT) memory usage. In my
tests, this advantage for some reason decreased a bit the more samples the
timeseries had (to 5-7% for millions of samples). This I can't fully explain,
but perhaps garbage collection issues were involved.
*WHEN TO USE THE NEW TIMESTAMP TYPE*
The new clientmodel.Timestamp type should be used whenever time
calculations are either directly or indirectly related to sample
timestamps.
For example:
- the timestamp of a sample itself
- all kinds of watermarks
- anything that may become or is compared to a sample timestamp (like the timestamp
passed into Target.Scrape()).
When to still use time.Time:
- for measuring durations/times not related to sample timestamps, like duration
telemetry exporting, timers that indicate how frequently to execute some
action, etc.
*NOTE ON OPERATOR OPTIMIZATION TESTS*
We don't use operator optimization code anymore, but it still lives in
the code as dead code. It still has tests, but I couldn't get all of them to
pass with the new timestamp format. I commented out the failing cases for now,
but we should probably remove the dead code soon. I just didn't want to do that
in the same change as this.
Change-Id: I821787414b0debe85c9fffaeb57abd453727af0f
This fixes part 2) of https://github.com/prometheus/prometheus/issues/367
(uninitialized time.Time mapping to a higher LevelDB key than "normal"
timestamps).
Change-Id: Ib079974110a7b7c4757948f81fc47d3d29ae43c9
This fixes part 1) of https://github.com/prometheus/prometheus/issues/367 (the
storing of samples with the wrong fingerprint into a compacted chunk, thus
corrupting it).
Change-Id: I4c36d0d2e508e37a0aba90b8ca2ecc78ee03e3f1
This commit fixes a critique of the old storage API design, whereby
the input parameters were always as raw bytes and never Protocol
Buffer messages that encapsulated the data, meaning every place a
read or mutation was conducted needed to manually perform said
translations on its own. This is taxing.
Change-Id: I4786938d0d207cefb7782bd2bd96a517eead186f
While a hack, this change should allow us to serve queries
expeditiously during a flush operation.
Change-Id: I9a483fd1dd2b0638ab24ace960df08773c4a5079
The background curation should be staggered to ensure that disk
I/O yields to user-interactive operations in a timely manner. The
lack of routine prioritization necessitates this.
Change-Id: I9b498a74ccd933ffb856e06fedc167430e521d86
Move the stream to an interface, for a number of additional changes
around it are underway.
Conflicts:
storage/metric/memory.go
Change-Id: I4a5fc176f4a5274a64ebdb1cad52600954c463c3
AppendSample will be repcated with AppendSamples, which will take
advantage of bulks appends. This is a necessary step for indexing
pipeline decoupling.
Change-Id: Ia83811a87bcc89973d3b64d64b85a28710253ebc
This commit is the first of several and should not be regarded as the
desired end state for these cleanups. What this one does it, however,
is wrap the query index writing behind an interface type that can be
injected into the storage stack and have its lifecycle managed
separately as needed. It also would mean we can swap out underlying
implementations to support remote indexing, buffering, no-op indexing
very easily.
In the future, most of the individual index interface members in the
tiered storage will go away in favor of agents that can query and
resolve what they need from the datastore without the user knowing
how and why they work.
There are too many parameters to constructing a LevelDB storage
instance for a construction method, so I've opted to take an
idiomatic approach of embedding them in a struct for easier
mediation and versioning.