diff --git a/promql/functions.go b/promql/functions.go index b1245f5a1..2a1a0b030 100644 --- a/promql/functions.go +++ b/promql/functions.go @@ -1168,10 +1168,14 @@ func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *Ev for _, mb := range enh.signatureToMetricWithBuckets { if len(mb.buckets) > 0 { + res, forcedMonotonicity := bucketQuantile(q, mb.buckets) enh.Out = append(enh.Out, Sample{ Metric: mb.metric, - F: bucketQuantile(q, mb.buckets), + F: res, }) + if forcedMonotonicity { + annos.Add(annotations.NewHistogramQuantileForcedMonotonicityWarning(mb.metric.Get(labels.MetricName), args[1].PositionRange())) + } } } diff --git a/promql/quantile.go b/promql/quantile.go index 06a02a8d4..1ebc39aa2 100644 --- a/promql/quantile.go +++ b/promql/quantile.go @@ -71,15 +71,17 @@ type metricWithBuckets struct { // If q<0, -Inf is returned. // // If q>1, +Inf is returned. -func bucketQuantile(q float64, buckets buckets) float64 { +// +// We also return a bool to indicate if monotonicity needed to be forced. +func bucketQuantile(q float64, buckets buckets) (float64, bool) { if math.IsNaN(q) { - return math.NaN() + return math.NaN(), false } if q < 0 { - return math.Inf(-1) + return math.Inf(-1), false } if q > 1 { - return math.Inf(+1) + return math.Inf(+1), false } slices.SortFunc(buckets, func(a, b bucket) int { // We don't expect the bucket boundary to be a NaN. @@ -92,27 +94,27 @@ func bucketQuantile(q float64, buckets buckets) float64 { return 0 }) if !math.IsInf(buckets[len(buckets)-1].upperBound, +1) { - return math.NaN() + return math.NaN(), false } buckets = coalesceBuckets(buckets) - ensureMonotonic(buckets) + forcedMonotonic := ensureMonotonic(buckets) if len(buckets) < 2 { - return math.NaN() + return math.NaN(), false } observations := buckets[len(buckets)-1].count if observations == 0 { - return math.NaN() + return math.NaN(), false } rank := q * observations b := sort.Search(len(buckets)-1, func(i int) bool { return buckets[i].count >= rank }) if b == len(buckets)-1 { - return buckets[len(buckets)-2].upperBound + return buckets[len(buckets)-2].upperBound, forcedMonotonic } if b == 0 && buckets[0].upperBound <= 0 { - return buckets[0].upperBound + return buckets[0].upperBound, forcedMonotonic } var ( bucketStart float64 @@ -124,7 +126,7 @@ func bucketQuantile(q float64, buckets buckets) float64 { count -= buckets[b-1].count rank -= buckets[b-1].count } - return bucketStart + (bucketEnd-bucketStart)*(rank/count) + return bucketStart + (bucketEnd-bucketStart)*(rank/count), forcedMonotonic } // histogramQuantile calculates the quantile 'q' based on the given histogram. @@ -370,9 +372,11 @@ func coalesceBuckets(buckets buckets) buckets { // // As a somewhat hacky solution until ingestion is atomic per scrape, we // calculate the "envelope" of the histogram buckets, essentially removing -// any decreases in the count between successive buckets. +// any decreases in the count between successive buckets. We return a bool +// to indicate if this monotonicity was forced or not. -func ensureMonotonic(buckets buckets) { +func ensureMonotonic(buckets buckets) bool { + forced := false max := buckets[0].count for i := 1; i < len(buckets); i++ { switch { @@ -380,8 +384,10 @@ func ensureMonotonic(buckets buckets) { max = buckets[i].count case buckets[i].count < max: buckets[i].count = max + forced = true } } + return forced } // quantile calculates the given quantile of a vector of samples. diff --git a/util/annotations/annotations.go b/util/annotations/annotations.go index e8b59dc7f..bff0100d9 100644 --- a/util/annotations/annotations.go +++ b/util/annotations/annotations.go @@ -100,10 +100,11 @@ var ( PromQLInfo = errors.New("PromQL info") PromQLWarning = errors.New("PromQL warning") - InvalidQuantileWarning = fmt.Errorf("%w: quantile value should be between 0 and 1", PromQLWarning) - BadBucketLabelWarning = fmt.Errorf("%w: bucket label %q is missing or has a malformed value", PromQLWarning, model.BucketLabel) - MixedFloatsHistogramsWarning = fmt.Errorf("%w: encountered a mix of histograms and floats for metric name", PromQLWarning) - MixedClassicNativeHistogramsWarning = fmt.Errorf("%w: vector contains a mix of classic and native histograms for metric name", PromQLWarning) + InvalidQuantileWarning = fmt.Errorf("%w: quantile value should be between 0 and 1", PromQLWarning) + BadBucketLabelWarning = fmt.Errorf("%w: bucket label %q is missing or has a malformed value", PromQLWarning, model.BucketLabel) + MixedFloatsHistogramsWarning = fmt.Errorf("%w: encountered a mix of histograms and floats for metric name", PromQLWarning) + MixedClassicNativeHistogramsWarning = fmt.Errorf("%w: vector contains a mix of classic and native histograms for metric name", PromQLWarning) + HistogramQuantileForcedMonotonicityWarning = fmt.Errorf("%w: input to histogram_quantile needed to be fixed for monotonicity (and may give inaccurate results) for metric name", PromQLWarning) PossibleNonCounterInfo = fmt.Errorf("%w: metric might not be a counter, name does not end in _total/_sum/_count:", PromQLInfo) ) @@ -155,6 +156,15 @@ func NewMixedClassicNativeHistogramsWarning(metricName string, pos posrange.Posi } } +// NewHistogramQuantileForcedMonotonicityWarning is used when the input (classic histograms) to +// histogram_quantile needs to be forced to be monotonic. +func NewHistogramQuantileForcedMonotonicityWarning(metricName string, pos posrange.PositionRange) annoErr { + return annoErr{ + PositionRange: pos, + Err: fmt.Errorf("%w %q", HistogramQuantileForcedMonotonicityWarning, metricName), + } +} + // NewPossibleNonCounterInfo is used when a counter metric does not have the suffixes // _total, _sum or _count. func NewPossibleNonCounterInfo(metricName string, pos posrange.PositionRange) annoErr {