Merge pull request #9588 from darshanime/kahan
Use kahan summation for better numerical stability
This commit is contained in:
commit
b862218389
|
@ -367,7 +367,7 @@ func aggrOverTime(vals []parser.Value, enh *EvalNodeHelper, aggrFn func([]Point)
|
|||
// === avg_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcAvgOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
var mean, count float64
|
||||
var mean, count, c float64
|
||||
for _, v := range values {
|
||||
count++
|
||||
if math.IsInf(mean, 0) {
|
||||
|
@ -387,9 +387,13 @@ func funcAvgOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|||
continue
|
||||
}
|
||||
}
|
||||
mean += v.V/count - mean/count
|
||||
mean, c = kahanSumInc(v.V/count-mean/count, mean, c)
|
||||
}
|
||||
return mean
|
||||
|
||||
if math.IsInf(mean, 0) {
|
||||
return mean
|
||||
}
|
||||
return mean + c
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -439,11 +443,14 @@ func funcMinOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|||
// === sum_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcSumOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
var sum float64
|
||||
var sum, c float64
|
||||
for _, v := range values {
|
||||
sum += v.V
|
||||
sum, c = kahanSumInc(v.V, sum, c)
|
||||
}
|
||||
return sum
|
||||
if math.IsInf(sum, 0) {
|
||||
return sum
|
||||
}
|
||||
return sum + c
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -464,28 +471,32 @@ func funcQuantileOverTime(vals []parser.Value, args parser.Expressions, enh *Eva
|
|||
// === stddev_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcStddevOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
var aux, count, mean float64
|
||||
var count float64
|
||||
var mean, cMean float64
|
||||
var aux, cAux float64
|
||||
for _, v := range values {
|
||||
count++
|
||||
delta := v.V - mean
|
||||
mean += delta / count
|
||||
aux += delta * (v.V - mean)
|
||||
delta := v.V - (mean + cMean)
|
||||
mean, cMean = kahanSumInc(delta/count, mean, cMean)
|
||||
aux, cAux = kahanSumInc(delta*(v.V-(mean+cMean)), aux, cAux)
|
||||
}
|
||||
return math.Sqrt(aux / count)
|
||||
return math.Sqrt((aux + cAux) / count)
|
||||
})
|
||||
}
|
||||
|
||||
// === stdvar_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcStdvarOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
var aux, count, mean float64
|
||||
var count float64
|
||||
var mean, cMean float64
|
||||
var aux, cAux float64
|
||||
for _, v := range values {
|
||||
count++
|
||||
delta := v.V - mean
|
||||
mean += delta / count
|
||||
aux += delta * (v.V - mean)
|
||||
delta := v.V - (mean + cMean)
|
||||
mean, cMean = kahanSumInc(delta/count, mean, cMean)
|
||||
aux, cAux = kahanSumInc(delta*(v.V-(mean+cMean)), aux, cAux)
|
||||
}
|
||||
return aux / count
|
||||
return (aux + cAux) / count
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -675,23 +686,51 @@ func funcTimestamp(vals []parser.Value, args parser.Expressions, enh *EvalNodeHe
|
|||
return enh.Out
|
||||
}
|
||||
|
||||
func kahanSum(samples []float64) float64 {
|
||||
var sum, c float64
|
||||
|
||||
for _, v := range samples {
|
||||
sum, c = kahanSumInc(v, sum, c)
|
||||
}
|
||||
return sum + c
|
||||
}
|
||||
|
||||
func kahanSumInc(inc, sum, c float64) (newSum, newC float64) {
|
||||
t := sum + inc
|
||||
// Using Neumaier improvement, swap if next term larger than sum.
|
||||
if math.Abs(sum) >= math.Abs(inc) {
|
||||
c += (sum - t) + inc
|
||||
} else {
|
||||
c += (inc - t) + sum
|
||||
}
|
||||
return t, c
|
||||
}
|
||||
|
||||
// linearRegression performs a least-square linear regression analysis on the
|
||||
// provided SamplePairs. It returns the slope, and the intercept value at the
|
||||
// provided time.
|
||||
func linearRegression(samples []Point, interceptTime int64) (slope, intercept float64) {
|
||||
var (
|
||||
n float64
|
||||
sumX, sumY float64
|
||||
sumXY, sumX2 float64
|
||||
n float64
|
||||
sumX, cX float64
|
||||
sumY, cY float64
|
||||
sumXY, cXY float64
|
||||
sumX2, cX2 float64
|
||||
)
|
||||
for _, sample := range samples {
|
||||
x := float64(sample.T-interceptTime) / 1e3
|
||||
n += 1.0
|
||||
sumY += sample.V
|
||||
sumX += x
|
||||
sumXY += x * sample.V
|
||||
sumX2 += x * x
|
||||
x := float64(sample.T-interceptTime) / 1e3
|
||||
sumX, cX = kahanSumInc(x, sumX, cX)
|
||||
sumY, cY = kahanSumInc(sample.V, sumY, cY)
|
||||
sumXY, cXY = kahanSumInc(x*sample.V, sumXY, cXY)
|
||||
sumX2, cX2 = kahanSumInc(x*x, sumX2, cX2)
|
||||
}
|
||||
|
||||
sumX = sumX + cX
|
||||
sumY = sumY + cY
|
||||
sumXY = sumXY + cXY
|
||||
sumX2 = sumX2 + cX2
|
||||
|
||||
covXY := sumXY - sumX*sumY/n
|
||||
varX := sumX2 - sumX*sumX/n
|
||||
|
||||
|
|
|
@ -15,6 +15,7 @@ package promql
|
|||
|
||||
import (
|
||||
"context"
|
||||
"math"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
|
@ -71,3 +72,9 @@ func TestFunctionList(t *testing.T) {
|
|||
require.True(t, ok, "function %s exists in parser package, but not in promql package", i)
|
||||
}
|
||||
}
|
||||
|
||||
func TestKahanSum(t *testing.T) {
|
||||
vals := []float64{1.0, math.Pow(10, 100), 1.0, -1 * math.Pow(10, 100)}
|
||||
expected := 2.0
|
||||
require.Equal(t, expected, kahanSum(vals))
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue