Dynamically reshard the QueueManager based on observed load.
This commit is contained in:
parent
5aa90c075b
commit
9d22f030cf
|
@ -0,0 +1,53 @@
|
|||
package remote
|
||||
|
||||
import (
|
||||
"sync"
|
||||
"sync/atomic"
|
||||
"time"
|
||||
)
|
||||
|
||||
// ewmaRate tracks an exponentially weighted moving average of a per-second rate.
|
||||
type ewmaRate struct {
|
||||
newEvents int64
|
||||
alpha float64
|
||||
interval time.Duration
|
||||
lastRate float64
|
||||
init bool
|
||||
mutex sync.Mutex
|
||||
}
|
||||
|
||||
func newEWMARate(alpha float64, interval time.Duration) ewmaRate {
|
||||
return ewmaRate{
|
||||
alpha: alpha,
|
||||
interval: interval,
|
||||
}
|
||||
}
|
||||
|
||||
// rate returns the per-second rate.
|
||||
func (r *ewmaRate) rate() float64 {
|
||||
r.mutex.Lock()
|
||||
defer r.mutex.Unlock()
|
||||
return r.lastRate
|
||||
}
|
||||
|
||||
// tick assumes to be called every r.interval.
|
||||
func (r *ewmaRate) tick() {
|
||||
newEvents := atomic.LoadInt64(&r.newEvents)
|
||||
atomic.AddInt64(&r.newEvents, -newEvents)
|
||||
instantRate := float64(newEvents) / r.interval.Seconds()
|
||||
|
||||
r.mutex.Lock()
|
||||
defer r.mutex.Unlock()
|
||||
|
||||
if r.init {
|
||||
r.lastRate += r.alpha * (instantRate - r.lastRate)
|
||||
} else {
|
||||
r.init = true
|
||||
r.lastRate = instantRate
|
||||
}
|
||||
}
|
||||
|
||||
// inc counts one event.
|
||||
func (r *ewmaRate) incr(incr int64) {
|
||||
atomic.AddInt64(&r.newEvents, incr)
|
||||
}
|
|
@ -14,6 +14,7 @@
|
|||
package remote
|
||||
|
||||
import (
|
||||
"math"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
|
@ -32,13 +33,25 @@ const (
|
|||
subsystem = "remote_storage"
|
||||
queue = "queue"
|
||||
|
||||
defaultShards = 10
|
||||
// With a maximum of 500 shards, assuming an average of 100ms remote write
|
||||
// time and 100 samples per batch, we will be able to push 500k samples/s.
|
||||
defaultMaxShards = 500
|
||||
defaultMaxSamplesPerSend = 100
|
||||
// The queue capacity is per shard.
|
||||
defaultQueueCapacity = 100 * 1024 / defaultShards
|
||||
|
||||
// defaultQueueCapacity is per shard - at 500 shards, this will buffer
|
||||
// 50m samples. It is configured to buffer 1024 batches, which at 100ms
|
||||
// per batch is 1:40mins.
|
||||
defaultQueueCapacity = defaultMaxSamplesPerSend * 1024
|
||||
defaultBatchSendDeadline = 5 * time.Second
|
||||
logRateLimit = 0.1 // Limit to 1 log event every 10s
|
||||
logBurst = 10
|
||||
|
||||
// We track samples in/out and how long pushes take using an Exponentially
|
||||
// Weighted Moving Average.
|
||||
ewmaWeight = 0.2
|
||||
shardUpdateDuration = 10 * time.Second
|
||||
shardToleranceFraction = 0.3 // allow 30% too many shards before scaling down
|
||||
|
||||
logRateLimit = 0.1 // Limit to 1 log event every 10s
|
||||
logBurst = 10
|
||||
)
|
||||
|
||||
var (
|
||||
|
@ -97,6 +110,15 @@ var (
|
|||
},
|
||||
[]string{queue},
|
||||
)
|
||||
numShards = prometheus.NewGaugeVec(
|
||||
prometheus.GaugeOpts{
|
||||
Namespace: namespace,
|
||||
Subsystem: subsystem,
|
||||
Name: "shards_total",
|
||||
Help: "The number of shards used for parallel sending to the remote storage.",
|
||||
},
|
||||
[]string{queue},
|
||||
)
|
||||
)
|
||||
|
||||
func init() {
|
||||
|
@ -106,6 +128,7 @@ func init() {
|
|||
prometheus.MustRegister(sentBatchDuration)
|
||||
prometheus.MustRegister(queueLength)
|
||||
prometheus.MustRegister(queueCapacity)
|
||||
prometheus.MustRegister(numShards)
|
||||
}
|
||||
|
||||
// StorageClient defines an interface for sending a batch of samples to an
|
||||
|
@ -120,7 +143,7 @@ type StorageClient interface {
|
|||
// QueueManagerConfig configures a storage queue.
|
||||
type QueueManagerConfig struct {
|
||||
QueueCapacity int // Number of samples to buffer per shard before we start dropping them.
|
||||
Shards int // Number of shards, i.e. amount of concurrency.
|
||||
MaxShards int // Max number of shards, i.e. amount of concurrency.
|
||||
MaxSamplesPerSend int // Maximum number of samples per send.
|
||||
BatchSendDeadline time.Duration // Maximum time sample will wait in buffer.
|
||||
ExternalLabels model.LabelSet
|
||||
|
@ -132,11 +155,18 @@ type QueueManagerConfig struct {
|
|||
// indicated by the provided StorageClient.
|
||||
type QueueManager struct {
|
||||
cfg QueueManagerConfig
|
||||
shards []chan *model.Sample
|
||||
wg sync.WaitGroup
|
||||
done chan struct{}
|
||||
queueName string
|
||||
logLimiter *rate.Limiter
|
||||
|
||||
shardsMtx sync.Mutex
|
||||
shards *shards
|
||||
numShards int
|
||||
reshardChan chan int
|
||||
quit chan struct{}
|
||||
wg sync.WaitGroup
|
||||
|
||||
samplesIn, samplesOut, samplesOutDuration ewmaRate
|
||||
integralAccumulator float64
|
||||
}
|
||||
|
||||
// NewQueueManager builds a new QueueManager.
|
||||
|
@ -144,8 +174,8 @@ func NewQueueManager(cfg QueueManagerConfig) *QueueManager {
|
|||
if cfg.QueueCapacity == 0 {
|
||||
cfg.QueueCapacity = defaultQueueCapacity
|
||||
}
|
||||
if cfg.Shards == 0 {
|
||||
cfg.Shards = defaultShards
|
||||
if cfg.MaxShards == 0 {
|
||||
cfg.MaxShards = defaultMaxShards
|
||||
}
|
||||
if cfg.MaxSamplesPerSend == 0 {
|
||||
cfg.MaxSamplesPerSend = defaultMaxSamplesPerSend
|
||||
|
@ -154,21 +184,26 @@ func NewQueueManager(cfg QueueManagerConfig) *QueueManager {
|
|||
cfg.BatchSendDeadline = defaultBatchSendDeadline
|
||||
}
|
||||
|
||||
shards := make([]chan *model.Sample, cfg.Shards)
|
||||
for i := 0; i < cfg.Shards; i++ {
|
||||
shards[i] = make(chan *model.Sample, cfg.QueueCapacity)
|
||||
}
|
||||
|
||||
t := &QueueManager{
|
||||
cfg: cfg,
|
||||
shards: shards,
|
||||
done: make(chan struct{}),
|
||||
queueName: cfg.Client.Name(),
|
||||
logLimiter: rate.NewLimiter(logRateLimit, logBurst),
|
||||
}
|
||||
cfg: cfg,
|
||||
queueName: cfg.Client.Name(),
|
||||
logLimiter: rate.NewLimiter(logRateLimit, logBurst),
|
||||
numShards: 1,
|
||||
reshardChan: make(chan int),
|
||||
quit: make(chan struct{}),
|
||||
|
||||
samplesIn: newEWMARate(ewmaWeight, shardUpdateDuration),
|
||||
samplesOut: newEWMARate(ewmaWeight, shardUpdateDuration),
|
||||
samplesOutDuration: newEWMARate(ewmaWeight, shardUpdateDuration),
|
||||
}
|
||||
t.shards = t.newShards(1)
|
||||
numShards.WithLabelValues(t.queueName).Set(float64(1))
|
||||
queueCapacity.WithLabelValues(t.queueName).Set(float64(t.cfg.QueueCapacity))
|
||||
t.wg.Add(cfg.Shards)
|
||||
|
||||
t.wg.Add(2)
|
||||
go t.updateShardsLoop()
|
||||
go t.reshardLoop()
|
||||
|
||||
return t
|
||||
}
|
||||
|
||||
|
@ -193,13 +228,13 @@ func (t *QueueManager) Append(s *model.Sample) error {
|
|||
return nil
|
||||
}
|
||||
|
||||
fp := snew.Metric.FastFingerprint()
|
||||
shard := uint64(fp) % uint64(t.cfg.Shards)
|
||||
t.shardsMtx.Lock()
|
||||
enqueued := t.shards.enqueue(&snew)
|
||||
t.shardsMtx.Unlock()
|
||||
|
||||
select {
|
||||
case t.shards[shard] <- &snew:
|
||||
if enqueued {
|
||||
queueLength.WithLabelValues(t.queueName).Inc()
|
||||
default:
|
||||
} else {
|
||||
droppedSamplesTotal.WithLabelValues(t.queueName).Inc()
|
||||
if t.logLimiter.Allow() {
|
||||
log.Warn("Remote storage queue full, discarding sample. Multiple subsequent messages of this kind may be suppressed.")
|
||||
|
@ -218,25 +253,181 @@ func (*QueueManager) NeedsThrottling() bool {
|
|||
// Start the queue manager sending samples to the remote storage.
|
||||
// Does not block.
|
||||
func (t *QueueManager) Start() {
|
||||
for i := 0; i < t.cfg.Shards; i++ {
|
||||
go t.runShard(i)
|
||||
}
|
||||
t.shardsMtx.Lock()
|
||||
defer t.shardsMtx.Unlock()
|
||||
t.shards.start()
|
||||
}
|
||||
|
||||
// Stop stops sending samples to the remote storage and waits for pending
|
||||
// sends to complete.
|
||||
func (t *QueueManager) Stop() {
|
||||
log.Infof("Stopping remote storage...")
|
||||
for _, shard := range t.shards {
|
||||
close(shard)
|
||||
}
|
||||
close(t.quit)
|
||||
t.wg.Wait()
|
||||
t.shardsMtx.Lock()
|
||||
defer t.shardsMtx.Unlock()
|
||||
t.shards.stop()
|
||||
log.Info("Remote storage stopped.")
|
||||
}
|
||||
|
||||
func (t *QueueManager) runShard(i int) {
|
||||
func (t *QueueManager) updateShardsLoop() {
|
||||
defer t.wg.Done()
|
||||
shard := t.shards[i]
|
||||
|
||||
ticker := time.Tick(shardUpdateDuration)
|
||||
for {
|
||||
select {
|
||||
case <-ticker:
|
||||
t.caclulateDesiredShards()
|
||||
case <-t.quit:
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (t *QueueManager) caclulateDesiredShards() {
|
||||
t.samplesIn.tick()
|
||||
t.samplesOut.tick()
|
||||
t.samplesOutDuration.tick()
|
||||
|
||||
// We use the number of incoming samples as a prediction of how much work we
|
||||
// will need to do next iteration. We add to this any pending samples
|
||||
// (received - send) so we can catch up with any backlog. We use the average
|
||||
// outgoing batch latency to work out how how many shards we need.
|
||||
var (
|
||||
samplesIn = t.samplesIn.rate()
|
||||
samplesOut = t.samplesOut.rate()
|
||||
samplesPending = samplesIn - samplesOut
|
||||
samplesOutDuration = t.samplesOutDuration.rate()
|
||||
)
|
||||
|
||||
// We use an integral accumulator, like in a PID, to help dampen oscillation.
|
||||
t.integralAccumulator = t.integralAccumulator + (samplesPending * 0.1)
|
||||
|
||||
if samplesOut <= 0 {
|
||||
return
|
||||
}
|
||||
|
||||
var (
|
||||
timePerSample = samplesOutDuration / samplesOut
|
||||
desiredShards = (timePerSample * (samplesIn + samplesPending + t.integralAccumulator)) / float64(time.Second)
|
||||
)
|
||||
log.Debugf("QueueManager.caclulateDesiredShards samplesIn=%f, samplesOut=%f, samplesPending=%f, desiredShards=%f",
|
||||
samplesIn, samplesOut, samplesPending, desiredShards)
|
||||
|
||||
// Changes in the number of shards must be greated than shardToleranceFraction.
|
||||
var (
|
||||
lowerBound = float64(t.numShards) * (1. - shardToleranceFraction)
|
||||
upperBound = float64(t.numShards) * (1. + shardToleranceFraction)
|
||||
)
|
||||
log.Debugf("QueueManager.updateShardsLoop %f <= %f <= %f", lowerBound, desiredShards, upperBound)
|
||||
if lowerBound <= desiredShards && desiredShards <= upperBound {
|
||||
return
|
||||
}
|
||||
|
||||
numShards := int(math.Ceil(desiredShards))
|
||||
if numShards > t.cfg.MaxShards {
|
||||
numShards = t.cfg.MaxShards
|
||||
}
|
||||
if numShards == t.numShards {
|
||||
return
|
||||
}
|
||||
|
||||
// Resharding can take some time, and we want this loop
|
||||
// to stay close to shardUpdateDuration.
|
||||
select {
|
||||
case t.reshardChan <- numShards:
|
||||
log.Infof("Remote storage resharding from %d to %d shards.", t.numShards, numShards)
|
||||
t.numShards = numShards
|
||||
default:
|
||||
log.Infof("Currently resharding, skipping.")
|
||||
}
|
||||
}
|
||||
|
||||
func (t *QueueManager) reshardLoop() {
|
||||
defer t.wg.Done()
|
||||
|
||||
for {
|
||||
select {
|
||||
case numShards := <-t.reshardChan:
|
||||
t.reshard(numShards)
|
||||
case <-t.quit:
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (t *QueueManager) reshard(n int) {
|
||||
numShards.WithLabelValues(t.queueName).Set(float64(n))
|
||||
|
||||
t.shardsMtx.Lock()
|
||||
newShards := t.newShards(n)
|
||||
oldShards := t.shards
|
||||
t.shards = newShards
|
||||
t.shardsMtx.Unlock()
|
||||
|
||||
oldShards.stop()
|
||||
|
||||
// We start the newShards after we have stopped (the therefore completely
|
||||
// flushed) the oldShards, to guarantee we only every deliver samples in
|
||||
// order.
|
||||
newShards.start()
|
||||
}
|
||||
|
||||
type shards struct {
|
||||
qm *QueueManager
|
||||
queues []chan *model.Sample
|
||||
done chan struct{}
|
||||
wg sync.WaitGroup
|
||||
}
|
||||
|
||||
func (t *QueueManager) newShards(numShards int) *shards {
|
||||
queues := make([]chan *model.Sample, numShards)
|
||||
for i := 0; i < numShards; i++ {
|
||||
queues[i] = make(chan *model.Sample, t.cfg.QueueCapacity)
|
||||
}
|
||||
s := &shards{
|
||||
qm: t,
|
||||
queues: queues,
|
||||
done: make(chan struct{}),
|
||||
}
|
||||
s.wg.Add(numShards)
|
||||
return s
|
||||
}
|
||||
|
||||
func (s *shards) len() int {
|
||||
return len(s.queues)
|
||||
}
|
||||
|
||||
func (s *shards) start() {
|
||||
for i := 0; i < len(s.queues); i++ {
|
||||
go s.runShard(i)
|
||||
}
|
||||
}
|
||||
|
||||
func (s *shards) stop() {
|
||||
for _, shard := range s.queues {
|
||||
close(shard)
|
||||
}
|
||||
s.wg.Wait()
|
||||
}
|
||||
|
||||
func (s *shards) enqueue(sample *model.Sample) bool {
|
||||
s.qm.samplesIn.incr(1)
|
||||
|
||||
fp := sample.Metric.FastFingerprint()
|
||||
shard := uint64(fp) % uint64(len(s.queues))
|
||||
|
||||
select {
|
||||
case s.queues[shard] <- sample:
|
||||
return true
|
||||
default:
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
func (s *shards) runShard(i int) {
|
||||
defer s.wg.Done()
|
||||
queue := s.queues[i]
|
||||
|
||||
// Send batches of at most MaxSamplesPerSend samples to the remote storage.
|
||||
// If we have fewer samples than that, flush them out after a deadline
|
||||
|
@ -245,45 +436,48 @@ func (t *QueueManager) runShard(i int) {
|
|||
|
||||
for {
|
||||
select {
|
||||
case s, ok := <-shard:
|
||||
case sample, ok := <-queue:
|
||||
if !ok {
|
||||
if len(pendingSamples) > 0 {
|
||||
log.Infof("Flushing %d samples to remote storage...", len(pendingSamples))
|
||||
t.sendSamples(pendingSamples)
|
||||
log.Infof("Done flushing.")
|
||||
log.Debugf("Flushing %d samples to remote storage...", len(pendingSamples))
|
||||
s.sendSamples(pendingSamples)
|
||||
log.Debugf("Done flushing.")
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
queueLength.WithLabelValues(t.queueName).Dec()
|
||||
pendingSamples = append(pendingSamples, s)
|
||||
queueLength.WithLabelValues(s.qm.queueName).Dec()
|
||||
pendingSamples = append(pendingSamples, sample)
|
||||
|
||||
for len(pendingSamples) >= t.cfg.MaxSamplesPerSend {
|
||||
t.sendSamples(pendingSamples[:t.cfg.MaxSamplesPerSend])
|
||||
pendingSamples = pendingSamples[t.cfg.MaxSamplesPerSend:]
|
||||
for len(pendingSamples) >= s.qm.cfg.MaxSamplesPerSend {
|
||||
s.sendSamples(pendingSamples[:s.qm.cfg.MaxSamplesPerSend])
|
||||
pendingSamples = pendingSamples[s.qm.cfg.MaxSamplesPerSend:]
|
||||
}
|
||||
case <-time.After(t.cfg.BatchSendDeadline):
|
||||
case <-time.After(s.qm.cfg.BatchSendDeadline):
|
||||
if len(pendingSamples) > 0 {
|
||||
t.sendSamples(pendingSamples)
|
||||
s.sendSamples(pendingSamples)
|
||||
pendingSamples = pendingSamples[:0]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (t *QueueManager) sendSamples(s model.Samples) {
|
||||
func (s *shards) sendSamples(samples model.Samples) {
|
||||
// Samples are sent to the remote storage on a best-effort basis. If a
|
||||
// sample isn't sent correctly the first time, it's simply dropped on the
|
||||
// floor.
|
||||
begin := time.Now()
|
||||
err := t.cfg.Client.Store(s)
|
||||
duration := time.Since(begin).Seconds()
|
||||
err := s.qm.cfg.Client.Store(samples)
|
||||
duration := time.Since(begin)
|
||||
|
||||
if err != nil {
|
||||
log.Warnf("error sending %d samples to remote storage: %s", len(s), err)
|
||||
failedSamplesTotal.WithLabelValues(t.queueName).Add(float64(len(s)))
|
||||
log.Warnf("error sending %d samples to remote storage: %s", len(samples), err)
|
||||
failedSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples)))
|
||||
} else {
|
||||
sentSamplesTotal.WithLabelValues(t.queueName).Add(float64(len(s)))
|
||||
sentSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples)))
|
||||
}
|
||||
sentBatchDuration.WithLabelValues(t.queueName).Observe(duration)
|
||||
sentBatchDuration.WithLabelValues(s.qm.queueName).Observe(duration.Seconds())
|
||||
|
||||
s.qm.samplesOut.incr(int64(len(samples)))
|
||||
s.qm.samplesOutDuration.incr(int64(duration))
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue