promql: Tweak histogramQuantile

- Simplify the code a bit.

- Cover more corner cases.

- Remove TODO for negative buckets. (I think they are handled. Tests
  will reveal if not.)

Signed-off-by: beorn7 <beorn@grafana.com>
This commit is contained in:
beorn7 2021-12-15 17:39:32 +01:00
parent 27f865ec49
commit 947810b0f2

View File

@ -151,32 +151,35 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
}
var (
bucket *histogram.FloatBucket
bucket histogram.FloatBucket
count float64
it = h.AllBucketIterator()
rank = q * h.Count
idx = -1
)
// TODO(codesome): Do we need any special handling for negative buckets?
for it.Next() {
idx++
b := it.At()
count += b.Count
bucket = it.At()
count += bucket.Count
if count >= rank {
bucket = &b
break
}
}
if bucket == nil {
panic("histogramQuantile: not possible")
}
if idx == 0 && bucket.Lower < 0 && bucket.Upper > 0 {
// Zero bucket has the result and it happens to be the first
// bucket of this histogram. So we consider 0 to be the lower
// bound.
if bucket.Lower < 0 && bucket.Upper > 0 && len(h.NegativeBuckets) == 0 {
// The result is in the zero bucket and the histogram has no
// negative buckets. So we consider 0 to be the lower bound.
bucket.Lower = 0
}
// Due to numerical inaccuracies, we could end up with a higher count
// than h.Count. Thus, make sure count is never higher than h.Count.
if count > h.Count {
count = h.Count
}
// We could have hit the highest bucket without even reaching the rank
// (observations not counted in any bucket are considered "overflow"
// observations above the highest bucket), in which case we simple
// return the upper limit of the highest explicit bucket.
if count < rank {
return bucket.Upper
}
rank -= count - bucket.Count
// TODO(codesome): Use a better estimation than linear.