promql: refactor: extract function nextSample

With sub-function nextValues which we shall use shortly.

Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
This commit is contained in:
Bryan Boreham 2024-04-05 11:37:55 +01:00
parent eb41e770b7
commit 602eb69edf
1 changed files with 26 additions and 17 deletions

View File

@ -2721,25 +2721,11 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
}
}
for si, series := range inputMatrix {
var s Sample
switch {
case len(series.Floats) > 0 && series.Floats[0].T == enh.Ts:
s = Sample{Metric: series.Metric, F: series.Floats[0].F, T: enh.Ts}
// Move input vectors forward so we don't have to re-scan the same
// past points at the next step.
inputMatrix[si].Floats = series.Floats[1:]
case len(series.Histograms) > 0 && series.Histograms[0].T == enh.Ts:
s = Sample{Metric: series.Metric, H: series.Histograms[0].H, T: enh.Ts}
inputMatrix[si].Histograms = series.Histograms[1:]
default:
for si := range inputMatrix {
s, ok := ev.nextSample(enh.Ts, inputMatrix, si)
if !ok {
continue
}
ev.currentSamples++
if ev.currentSamples > ev.maxSamples {
ev.error(ErrTooManySamples(env))
}
group := orderedResult[seriesToResult[si]]
// Initialize this group if it's the first time we've seen it.
@ -3058,6 +3044,29 @@ func addToSeries(ss *Series, ts int64, f float64, h *histogram.FloatHistogram, n
}
}
func (ev *evaluator) nextValues(ts int64, series *Series) (f float64, h *histogram.FloatHistogram, b bool) {
switch {
case len(series.Floats) > 0 && series.Floats[0].T == ts:
f = series.Floats[0].F
series.Floats = series.Floats[1:] // Move input vectors forward
case len(series.Histograms) > 0 && series.Histograms[0].T == ts:
h = series.Histograms[0].H
series.Histograms = series.Histograms[1:]
default:
return f, h, false
}
return f, h, true
}
func (ev *evaluator) nextSample(ts int64, inputMatrix Matrix, si int) (Sample, bool) {
f, h, ok := ev.nextValues(ts, &inputMatrix[si])
ev.currentSamples++
if ev.currentSamples > ev.maxSamples {
ev.error(ErrTooManySamples(env))
}
return Sample{Metric: inputMatrix[si].Metric, F: f, H: h, T: ts}, ok
}
// groupingKey builds and returns the grouping key for the given metric and
// grouping labels.
func generateGroupingKey(metric labels.Labels, grouping []string, without bool, buf []byte) (uint64, []byte) {