mirror of
https://github.com/prometheus/prometheus
synced 2024-12-26 00:23:18 +00:00
Cleanup PromQL functions (#6551)
* Cleanup PromQL functions The engine ensures, for Matrix functions, that functions are called with exactly one series at the time. Therefore a lot of code can be inlined and we can directly assume the first element of the arguments exists and contains all the samples needed. Signed-off-by: Julien Pivotto <roidelapluie@inuits.eu>
This commit is contained in:
parent
536d416299
commit
577e738986
@ -66,77 +66,74 @@ func extrapolatedRate(vals []Value, args Expressions, enh *EvalNodeHelper, isCou
|
|||||||
ms := args[0].(*MatrixSelector)
|
ms := args[0].(*MatrixSelector)
|
||||||
|
|
||||||
var (
|
var (
|
||||||
matrix = vals[0].(Matrix)
|
samples = vals[0].(Matrix)[0]
|
||||||
rangeStart = enh.ts - durationMilliseconds(ms.Range+ms.Offset)
|
rangeStart = enh.ts - durationMilliseconds(ms.Range+ms.Offset)
|
||||||
rangeEnd = enh.ts - durationMilliseconds(ms.Offset)
|
rangeEnd = enh.ts - durationMilliseconds(ms.Offset)
|
||||||
)
|
)
|
||||||
|
|
||||||
for _, samples := range matrix {
|
// No sense in trying to compute a rate without at least two points. Drop
|
||||||
// No sense in trying to compute a rate without at least two points. Drop
|
// this Vector element.
|
||||||
// this Vector element.
|
if len(samples.Points) < 2 {
|
||||||
if len(samples.Points) < 2 {
|
return enh.out
|
||||||
continue
|
|
||||||
}
|
|
||||||
var (
|
|
||||||
counterCorrection float64
|
|
||||||
lastValue float64
|
|
||||||
)
|
|
||||||
for _, sample := range samples.Points {
|
|
||||||
if isCounter && sample.V < lastValue {
|
|
||||||
counterCorrection += lastValue
|
|
||||||
}
|
|
||||||
lastValue = sample.V
|
|
||||||
}
|
|
||||||
resultValue := lastValue - samples.Points[0].V + counterCorrection
|
|
||||||
|
|
||||||
// Duration between first/last samples and boundary of range.
|
|
||||||
durationToStart := float64(samples.Points[0].T-rangeStart) / 1000
|
|
||||||
durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000
|
|
||||||
|
|
||||||
sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000
|
|
||||||
averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1)
|
|
||||||
|
|
||||||
if isCounter && resultValue > 0 && samples.Points[0].V >= 0 {
|
|
||||||
// Counters cannot be negative. If we have any slope at
|
|
||||||
// all (i.e. resultValue went up), we can extrapolate
|
|
||||||
// the zero point of the counter. If the duration to the
|
|
||||||
// zero point is shorter than the durationToStart, we
|
|
||||||
// take the zero point as the start of the series,
|
|
||||||
// thereby avoiding extrapolation to negative counter
|
|
||||||
// values.
|
|
||||||
durationToZero := sampledInterval * (samples.Points[0].V / resultValue)
|
|
||||||
if durationToZero < durationToStart {
|
|
||||||
durationToStart = durationToZero
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// If the first/last samples are close to the boundaries of the range,
|
|
||||||
// extrapolate the result. This is as we expect that another sample
|
|
||||||
// will exist given the spacing between samples we've seen thus far,
|
|
||||||
// with an allowance for noise.
|
|
||||||
extrapolationThreshold := averageDurationBetweenSamples * 1.1
|
|
||||||
extrapolateToInterval := sampledInterval
|
|
||||||
|
|
||||||
if durationToStart < extrapolationThreshold {
|
|
||||||
extrapolateToInterval += durationToStart
|
|
||||||
} else {
|
|
||||||
extrapolateToInterval += averageDurationBetweenSamples / 2
|
|
||||||
}
|
|
||||||
if durationToEnd < extrapolationThreshold {
|
|
||||||
extrapolateToInterval += durationToEnd
|
|
||||||
} else {
|
|
||||||
extrapolateToInterval += averageDurationBetweenSamples / 2
|
|
||||||
}
|
|
||||||
resultValue = resultValue * (extrapolateToInterval / sampledInterval)
|
|
||||||
if isRate {
|
|
||||||
resultValue = resultValue / ms.Range.Seconds()
|
|
||||||
}
|
|
||||||
|
|
||||||
enh.out = append(enh.out, Sample{
|
|
||||||
Point: Point{V: resultValue},
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
return enh.out
|
var (
|
||||||
|
counterCorrection float64
|
||||||
|
lastValue float64
|
||||||
|
)
|
||||||
|
for _, sample := range samples.Points {
|
||||||
|
if isCounter && sample.V < lastValue {
|
||||||
|
counterCorrection += lastValue
|
||||||
|
}
|
||||||
|
lastValue = sample.V
|
||||||
|
}
|
||||||
|
resultValue := lastValue - samples.Points[0].V + counterCorrection
|
||||||
|
|
||||||
|
// Duration between first/last samples and boundary of range.
|
||||||
|
durationToStart := float64(samples.Points[0].T-rangeStart) / 1000
|
||||||
|
durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000
|
||||||
|
|
||||||
|
sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000
|
||||||
|
averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1)
|
||||||
|
|
||||||
|
if isCounter && resultValue > 0 && samples.Points[0].V >= 0 {
|
||||||
|
// Counters cannot be negative. If we have any slope at
|
||||||
|
// all (i.e. resultValue went up), we can extrapolate
|
||||||
|
// the zero point of the counter. If the duration to the
|
||||||
|
// zero point is shorter than the durationToStart, we
|
||||||
|
// take the zero point as the start of the series,
|
||||||
|
// thereby avoiding extrapolation to negative counter
|
||||||
|
// values.
|
||||||
|
durationToZero := sampledInterval * (samples.Points[0].V / resultValue)
|
||||||
|
if durationToZero < durationToStart {
|
||||||
|
durationToStart = durationToZero
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the first/last samples are close to the boundaries of the range,
|
||||||
|
// extrapolate the result. This is as we expect that another sample
|
||||||
|
// will exist given the spacing between samples we've seen thus far,
|
||||||
|
// with an allowance for noise.
|
||||||
|
extrapolationThreshold := averageDurationBetweenSamples * 1.1
|
||||||
|
extrapolateToInterval := sampledInterval
|
||||||
|
|
||||||
|
if durationToStart < extrapolationThreshold {
|
||||||
|
extrapolateToInterval += durationToStart
|
||||||
|
} else {
|
||||||
|
extrapolateToInterval += averageDurationBetweenSamples / 2
|
||||||
|
}
|
||||||
|
if durationToEnd < extrapolationThreshold {
|
||||||
|
extrapolateToInterval += durationToEnd
|
||||||
|
} else {
|
||||||
|
extrapolateToInterval += averageDurationBetweenSamples / 2
|
||||||
|
}
|
||||||
|
resultValue = resultValue * (extrapolateToInterval / sampledInterval)
|
||||||
|
if isRate {
|
||||||
|
resultValue = resultValue / ms.Range.Seconds()
|
||||||
|
}
|
||||||
|
|
||||||
|
return append(enh.out, Sample{
|
||||||
|
Point: Point{V: resultValue},
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
// === delta(Matrix ValueTypeMatrix) Vector ===
|
// === delta(Matrix ValueTypeMatrix) Vector ===
|
||||||
@ -165,40 +162,38 @@ func funcIdelta(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func instantValue(vals []Value, out Vector, isRate bool) Vector {
|
func instantValue(vals []Value, out Vector, isRate bool) Vector {
|
||||||
for _, samples := range vals[0].(Matrix) {
|
samples := vals[0].(Matrix)[0]
|
||||||
// No sense in trying to compute a rate without at least two points. Drop
|
// No sense in trying to compute a rate without at least two points. Drop
|
||||||
// this Vector element.
|
// this Vector element.
|
||||||
if len(samples.Points) < 2 {
|
if len(samples.Points) < 2 {
|
||||||
continue
|
return out
|
||||||
}
|
|
||||||
|
|
||||||
lastSample := samples.Points[len(samples.Points)-1]
|
|
||||||
previousSample := samples.Points[len(samples.Points)-2]
|
|
||||||
|
|
||||||
var resultValue float64
|
|
||||||
if isRate && lastSample.V < previousSample.V {
|
|
||||||
// Counter reset.
|
|
||||||
resultValue = lastSample.V
|
|
||||||
} else {
|
|
||||||
resultValue = lastSample.V - previousSample.V
|
|
||||||
}
|
|
||||||
|
|
||||||
sampledInterval := lastSample.T - previousSample.T
|
|
||||||
if sampledInterval == 0 {
|
|
||||||
// Avoid dividing by 0.
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
|
|
||||||
if isRate {
|
|
||||||
// Convert to per-second.
|
|
||||||
resultValue /= float64(sampledInterval) / 1000
|
|
||||||
}
|
|
||||||
|
|
||||||
out = append(out, Sample{
|
|
||||||
Point: Point{V: resultValue},
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
return out
|
|
||||||
|
lastSample := samples.Points[len(samples.Points)-1]
|
||||||
|
previousSample := samples.Points[len(samples.Points)-2]
|
||||||
|
|
||||||
|
var resultValue float64
|
||||||
|
if isRate && lastSample.V < previousSample.V {
|
||||||
|
// Counter reset.
|
||||||
|
resultValue = lastSample.V
|
||||||
|
} else {
|
||||||
|
resultValue = lastSample.V - previousSample.V
|
||||||
|
}
|
||||||
|
|
||||||
|
sampledInterval := lastSample.T - previousSample.T
|
||||||
|
if sampledInterval == 0 {
|
||||||
|
// Avoid dividing by 0.
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
if isRate {
|
||||||
|
// Convert to per-second.
|
||||||
|
resultValue /= float64(sampledInterval) / 1000
|
||||||
|
}
|
||||||
|
|
||||||
|
return append(out, Sample{
|
||||||
|
Point: Point{V: resultValue},
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
// Calculate the trend value at the given index i in raw data d.
|
// Calculate the trend value at the given index i in raw data d.
|
||||||
@ -223,7 +218,7 @@ func calcTrendValue(i int, sf, tf, s0, s1, b float64) float64 {
|
|||||||
// how trends in historical data will affect the current data. A higher trend factor increases the influence.
|
// how trends in historical data will affect the current data. A higher trend factor increases the influence.
|
||||||
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing".
|
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing".
|
||||||
func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||||
mat := vals[0].(Matrix)
|
samples := vals[0].(Matrix)[0]
|
||||||
|
|
||||||
// The smoothing factor argument.
|
// The smoothing factor argument.
|
||||||
sf := vals[1].(Vector)[0].V
|
sf := vals[1].(Vector)[0].V
|
||||||
@ -239,40 +234,35 @@ func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector
|
|||||||
panic(errors.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf))
|
panic(errors.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf))
|
||||||
}
|
}
|
||||||
|
|
||||||
var l int
|
l := len(samples.Points)
|
||||||
for _, samples := range mat {
|
|
||||||
l = len(samples.Points)
|
|
||||||
|
|
||||||
// Can't do the smoothing operation with less than two points.
|
// Can't do the smoothing operation with less than two points.
|
||||||
if l < 2 {
|
if l < 2 {
|
||||||
continue
|
return enh.out
|
||||||
}
|
|
||||||
|
|
||||||
var s0, s1, b float64
|
|
||||||
// Set initial values.
|
|
||||||
s1 = samples.Points[0].V
|
|
||||||
b = samples.Points[1].V - samples.Points[0].V
|
|
||||||
|
|
||||||
// Run the smoothing operation.
|
|
||||||
var x, y float64
|
|
||||||
for i := 1; i < l; i++ {
|
|
||||||
|
|
||||||
// Scale the raw value against the smoothing factor.
|
|
||||||
x = sf * samples.Points[i].V
|
|
||||||
|
|
||||||
// Scale the last smoothed value with the trend at this point.
|
|
||||||
b = calcTrendValue(i-1, sf, tf, s0, s1, b)
|
|
||||||
y = (1 - sf) * (s1 + b)
|
|
||||||
|
|
||||||
s0, s1 = s1, x+y
|
|
||||||
}
|
|
||||||
|
|
||||||
enh.out = append(enh.out, Sample{
|
|
||||||
Point: Point{V: s1},
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return enh.out
|
var s0, s1, b float64
|
||||||
|
// Set initial values.
|
||||||
|
s1 = samples.Points[0].V
|
||||||
|
b = samples.Points[1].V - samples.Points[0].V
|
||||||
|
|
||||||
|
// Run the smoothing operation.
|
||||||
|
var x, y float64
|
||||||
|
for i := 1; i < l; i++ {
|
||||||
|
|
||||||
|
// Scale the raw value against the smoothing factor.
|
||||||
|
x = sf * samples.Points[i].V
|
||||||
|
|
||||||
|
// Scale the last smoothed value with the trend at this point.
|
||||||
|
b = calcTrendValue(i-1, sf, tf, s0, s1, b)
|
||||||
|
y = (1 - sf) * (s1 + b)
|
||||||
|
|
||||||
|
s0, s1 = s1, x+y
|
||||||
|
}
|
||||||
|
|
||||||
|
return append(enh.out, Sample{
|
||||||
|
Point: Point{V: s1},
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
// === sort(node ValueTypeVector) Vector ===
|
// === sort(node ValueTypeVector) Vector ===
|
||||||
@ -355,18 +345,11 @@ func funcScalar(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func aggrOverTime(vals []Value, enh *EvalNodeHelper, aggrFn func([]Point) float64) Vector {
|
func aggrOverTime(vals []Value, enh *EvalNodeHelper, aggrFn func([]Point) float64) Vector {
|
||||||
mat := vals[0].(Matrix)
|
el := vals[0].(Matrix)[0]
|
||||||
|
|
||||||
for _, el := range mat {
|
return append(enh.out, Sample{
|
||||||
if len(el.Points) == 0 {
|
Point: Point{V: aggrFn(el.Points)},
|
||||||
continue
|
})
|
||||||
}
|
|
||||||
|
|
||||||
enh.out = append(enh.out, Sample{
|
|
||||||
Point: Point{V: aggrFn(el.Points)},
|
|
||||||
})
|
|
||||||
}
|
|
||||||
return enh.out
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// === avg_over_time(Matrix ValueTypeMatrix) Vector ===
|
// === avg_over_time(Matrix ValueTypeMatrix) Vector ===
|
||||||
@ -429,22 +412,15 @@ func funcSumOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector
|
|||||||
// === quantile_over_time(Matrix ValueTypeMatrix) Vector ===
|
// === quantile_over_time(Matrix ValueTypeMatrix) Vector ===
|
||||||
func funcQuantileOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
func funcQuantileOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||||
q := vals[0].(Vector)[0].V
|
q := vals[0].(Vector)[0].V
|
||||||
mat := vals[1].(Matrix)
|
el := vals[1].(Matrix)[0]
|
||||||
|
|
||||||
for _, el := range mat {
|
values := make(vectorByValueHeap, 0, len(el.Points))
|
||||||
if len(el.Points) == 0 {
|
for _, v := range el.Points {
|
||||||
continue
|
values = append(values, Sample{Point: Point{V: v.V}})
|
||||||
}
|
|
||||||
|
|
||||||
values := make(vectorByValueHeap, 0, len(el.Points))
|
|
||||||
for _, v := range el.Points {
|
|
||||||
values = append(values, Sample{Point: Point{V: v.V}})
|
|
||||||
}
|
|
||||||
enh.out = append(enh.out, Sample{
|
|
||||||
Point: Point{V: quantile(q, values)},
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
return enh.out
|
return append(enh.out, Sample{
|
||||||
|
Point: Point{V: quantile(q, values)},
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
// === stddev_over_time(Matrix ValueTypeMatrix) Vector ===
|
// === stddev_over_time(Matrix ValueTypeMatrix) Vector ===
|
||||||
@ -588,44 +564,38 @@ func linearRegression(samples []Point, interceptTime int64) (slope, intercept fl
|
|||||||
|
|
||||||
// === deriv(node ValueTypeMatrix) Vector ===
|
// === deriv(node ValueTypeMatrix) Vector ===
|
||||||
func funcDeriv(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
func funcDeriv(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||||
mat := vals[0].(Matrix)
|
samples := vals[0].(Matrix)[0]
|
||||||
|
|
||||||
for _, samples := range mat {
|
// No sense in trying to compute a derivative without at least two points.
|
||||||
// No sense in trying to compute a derivative without at least two points.
|
// Drop this Vector element.
|
||||||
// Drop this Vector element.
|
if len(samples.Points) < 2 {
|
||||||
if len(samples.Points) < 2 {
|
return enh.out
|
||||||
continue
|
|
||||||
}
|
|
||||||
|
|
||||||
// We pass in an arbitrary timestamp that is near the values in use
|
|
||||||
// to avoid floating point accuracy issues, see
|
|
||||||
// https://github.com/prometheus/prometheus/issues/2674
|
|
||||||
slope, _ := linearRegression(samples.Points, samples.Points[0].T)
|
|
||||||
enh.out = append(enh.out, Sample{
|
|
||||||
Point: Point{V: slope},
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
return enh.out
|
|
||||||
|
// We pass in an arbitrary timestamp that is near the values in use
|
||||||
|
// to avoid floating point accuracy issues, see
|
||||||
|
// https://github.com/prometheus/prometheus/issues/2674
|
||||||
|
slope, _ := linearRegression(samples.Points, samples.Points[0].T)
|
||||||
|
return append(enh.out, Sample{
|
||||||
|
Point: Point{V: slope},
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
// === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector ===
|
// === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector ===
|
||||||
func funcPredictLinear(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
func funcPredictLinear(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||||
mat := vals[0].(Matrix)
|
samples := vals[0].(Matrix)[0]
|
||||||
duration := vals[1].(Vector)[0].V
|
duration := vals[1].(Vector)[0].V
|
||||||
|
|
||||||
for _, samples := range mat {
|
// No sense in trying to predict anything without at least two points.
|
||||||
// No sense in trying to predict anything without at least two points.
|
// Drop this Vector element.
|
||||||
// Drop this Vector element.
|
if len(samples.Points) < 2 {
|
||||||
if len(samples.Points) < 2 {
|
return enh.out
|
||||||
continue
|
|
||||||
}
|
|
||||||
slope, intercept := linearRegression(samples.Points, enh.ts)
|
|
||||||
|
|
||||||
enh.out = append(enh.out, Sample{
|
|
||||||
Point: Point{V: slope*duration + intercept},
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
return enh.out
|
slope, intercept := linearRegression(samples.Points, enh.ts)
|
||||||
|
|
||||||
|
return append(enh.out, Sample{
|
||||||
|
Point: Point{V: slope*duration + intercept},
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
// === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector ===
|
// === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector ===
|
||||||
@ -678,46 +648,40 @@ func funcHistogramQuantile(vals []Value, args Expressions, enh *EvalNodeHelper)
|
|||||||
|
|
||||||
// === resets(Matrix ValueTypeMatrix) Vector ===
|
// === resets(Matrix ValueTypeMatrix) Vector ===
|
||||||
func funcResets(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
func funcResets(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||||
in := vals[0].(Matrix)
|
samples := vals[0].(Matrix)[0]
|
||||||
|
|
||||||
for _, samples := range in {
|
resets := 0
|
||||||
resets := 0
|
prev := samples.Points[0].V
|
||||||
prev := samples.Points[0].V
|
for _, sample := range samples.Points[1:] {
|
||||||
for _, sample := range samples.Points[1:] {
|
current := sample.V
|
||||||
current := sample.V
|
if current < prev {
|
||||||
if current < prev {
|
resets++
|
||||||
resets++
|
|
||||||
}
|
|
||||||
prev = current
|
|
||||||
}
|
}
|
||||||
|
prev = current
|
||||||
enh.out = append(enh.out, Sample{
|
|
||||||
Point: Point{V: float64(resets)},
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
return enh.out
|
|
||||||
|
return append(enh.out, Sample{
|
||||||
|
Point: Point{V: float64(resets)},
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
// === changes(Matrix ValueTypeMatrix) Vector ===
|
// === changes(Matrix ValueTypeMatrix) Vector ===
|
||||||
func funcChanges(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
func funcChanges(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||||
in := vals[0].(Matrix)
|
samples := vals[0].(Matrix)[0]
|
||||||
|
|
||||||
for _, samples := range in {
|
changes := 0
|
||||||
changes := 0
|
prev := samples.Points[0].V
|
||||||
prev := samples.Points[0].V
|
for _, sample := range samples.Points[1:] {
|
||||||
for _, sample := range samples.Points[1:] {
|
current := sample.V
|
||||||
current := sample.V
|
if current != prev && !(math.IsNaN(current) && math.IsNaN(prev)) {
|
||||||
if current != prev && !(math.IsNaN(current) && math.IsNaN(prev)) {
|
changes++
|
||||||
changes++
|
|
||||||
}
|
|
||||||
prev = current
|
|
||||||
}
|
}
|
||||||
|
prev = current
|
||||||
enh.out = append(enh.out, Sample{
|
|
||||||
Point: Point{V: float64(changes)},
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
return enh.out
|
|
||||||
|
return append(enh.out, Sample{
|
||||||
|
Point: Point{V: float64(changes)},
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
// === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector ===
|
// === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector ===
|
||||||
@ -1297,7 +1261,7 @@ func createLabelsForAbsentFunction(expr Expr) labels.Labels {
|
|||||||
}
|
}
|
||||||
|
|
||||||
for _, v := range empty {
|
for _, v := range empty {
|
||||||
m = labels.NewBuilder(m).Set(v, "").Labels()
|
m = labels.NewBuilder(m).Del(v).Labels()
|
||||||
}
|
}
|
||||||
return m
|
return m
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user