Cleanup PromQL functions (#6551)

* Cleanup PromQL functions

The engine ensures, for Matrix functions, that functions are called with exactly one series at the time.
Therefore a lot of code can be inlined and we can directly assume the first element of the arguments exists and contains all the samples needed.

Signed-off-by: Julien Pivotto <roidelapluie@inuits.eu>
This commit is contained in:
Julien Pivotto 2020-01-06 11:33:36 +01:00 committed by Brian Brazil
parent 536d416299
commit 577e738986

View File

@ -66,16 +66,15 @@ func extrapolatedRate(vals []Value, args Expressions, enh *EvalNodeHelper, isCou
ms := args[0].(*MatrixSelector) ms := args[0].(*MatrixSelector)
var ( var (
matrix = vals[0].(Matrix) samples = vals[0].(Matrix)[0]
rangeStart = enh.ts - durationMilliseconds(ms.Range+ms.Offset) rangeStart = enh.ts - durationMilliseconds(ms.Range+ms.Offset)
rangeEnd = enh.ts - durationMilliseconds(ms.Offset) rangeEnd = enh.ts - durationMilliseconds(ms.Offset)
) )
for _, samples := range matrix {
// No sense in trying to compute a rate without at least two points. Drop // No sense in trying to compute a rate without at least two points. Drop
// this Vector element. // this Vector element.
if len(samples.Points) < 2 { if len(samples.Points) < 2 {
continue return enh.out
} }
var ( var (
counterCorrection float64 counterCorrection float64
@ -132,12 +131,10 @@ func extrapolatedRate(vals []Value, args Expressions, enh *EvalNodeHelper, isCou
resultValue = resultValue / ms.Range.Seconds() resultValue = resultValue / ms.Range.Seconds()
} }
enh.out = append(enh.out, Sample{ return append(enh.out, Sample{
Point: Point{V: resultValue}, Point: Point{V: resultValue},
}) })
} }
return enh.out
}
// === delta(Matrix ValueTypeMatrix) Vector === // === delta(Matrix ValueTypeMatrix) Vector ===
func funcDelta(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcDelta(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
@ -165,11 +162,11 @@ func funcIdelta(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
} }
func instantValue(vals []Value, out Vector, isRate bool) Vector { func instantValue(vals []Value, out Vector, isRate bool) Vector {
for _, samples := range vals[0].(Matrix) { samples := vals[0].(Matrix)[0]
// No sense in trying to compute a rate without at least two points. Drop // No sense in trying to compute a rate without at least two points. Drop
// this Vector element. // this Vector element.
if len(samples.Points) < 2 { if len(samples.Points) < 2 {
continue return out
} }
lastSample := samples.Points[len(samples.Points)-1] lastSample := samples.Points[len(samples.Points)-1]
@ -186,7 +183,7 @@ func instantValue(vals []Value, out Vector, isRate bool) Vector {
sampledInterval := lastSample.T - previousSample.T sampledInterval := lastSample.T - previousSample.T
if sampledInterval == 0 { if sampledInterval == 0 {
// Avoid dividing by 0. // Avoid dividing by 0.
continue return out
} }
if isRate { if isRate {
@ -194,12 +191,10 @@ func instantValue(vals []Value, out Vector, isRate bool) Vector {
resultValue /= float64(sampledInterval) / 1000 resultValue /= float64(sampledInterval) / 1000
} }
out = append(out, Sample{ return append(out, Sample{
Point: Point{V: resultValue}, Point: Point{V: resultValue},
}) })
} }
return out
}
// Calculate the trend value at the given index i in raw data d. // Calculate the trend value at the given index i in raw data d.
// This is somewhat analogous to the slope of the trend at the given index. // This is somewhat analogous to the slope of the trend at the given index.
@ -223,7 +218,7 @@ func calcTrendValue(i int, sf, tf, s0, s1, b float64) float64 {
// how trends in historical data will affect the current data. A higher trend factor increases the influence. // how trends in historical data will affect the current data. A higher trend factor increases the influence.
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing". // of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing".
func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
mat := vals[0].(Matrix) samples := vals[0].(Matrix)[0]
// The smoothing factor argument. // The smoothing factor argument.
sf := vals[1].(Vector)[0].V sf := vals[1].(Vector)[0].V
@ -239,13 +234,11 @@ func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector
panic(errors.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf)) panic(errors.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf))
} }
var l int l := len(samples.Points)
for _, samples := range mat {
l = len(samples.Points)
// Can't do the smoothing operation with less than two points. // Can't do the smoothing operation with less than two points.
if l < 2 { if l < 2 {
continue return enh.out
} }
var s0, s1, b float64 var s0, s1, b float64
@ -267,14 +260,11 @@ func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector
s0, s1 = s1, x+y s0, s1 = s1, x+y
} }
enh.out = append(enh.out, Sample{ return append(enh.out, Sample{
Point: Point{V: s1}, Point: Point{V: s1},
}) })
} }
return enh.out
}
// === sort(node ValueTypeVector) Vector === // === sort(node ValueTypeVector) Vector ===
func funcSort(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcSort(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
// NaN should sort to the bottom, so take descending sort with NaN first and // NaN should sort to the bottom, so take descending sort with NaN first and
@ -355,19 +345,12 @@ func funcScalar(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
} }
func aggrOverTime(vals []Value, enh *EvalNodeHelper, aggrFn func([]Point) float64) Vector { func aggrOverTime(vals []Value, enh *EvalNodeHelper, aggrFn func([]Point) float64) Vector {
mat := vals[0].(Matrix) el := vals[0].(Matrix)[0]
for _, el := range mat { return append(enh.out, Sample{
if len(el.Points) == 0 {
continue
}
enh.out = append(enh.out, Sample{
Point: Point{V: aggrFn(el.Points)}, Point: Point{V: aggrFn(el.Points)},
}) })
} }
return enh.out
}
// === avg_over_time(Matrix ValueTypeMatrix) Vector === // === avg_over_time(Matrix ValueTypeMatrix) Vector ===
func funcAvgOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcAvgOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
@ -429,23 +412,16 @@ func funcSumOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector
// === quantile_over_time(Matrix ValueTypeMatrix) Vector === // === quantile_over_time(Matrix ValueTypeMatrix) Vector ===
func funcQuantileOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcQuantileOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
q := vals[0].(Vector)[0].V q := vals[0].(Vector)[0].V
mat := vals[1].(Matrix) el := vals[1].(Matrix)[0]
for _, el := range mat {
if len(el.Points) == 0 {
continue
}
values := make(vectorByValueHeap, 0, len(el.Points)) values := make(vectorByValueHeap, 0, len(el.Points))
for _, v := range el.Points { for _, v := range el.Points {
values = append(values, Sample{Point: Point{V: v.V}}) values = append(values, Sample{Point: Point{V: v.V}})
} }
enh.out = append(enh.out, Sample{ return append(enh.out, Sample{
Point: Point{V: quantile(q, values)}, Point: Point{V: quantile(q, values)},
}) })
} }
return enh.out
}
// === stddev_over_time(Matrix ValueTypeMatrix) Vector === // === stddev_over_time(Matrix ValueTypeMatrix) Vector ===
func funcStddevOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcStddevOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
@ -588,45 +564,39 @@ func linearRegression(samples []Point, interceptTime int64) (slope, intercept fl
// === deriv(node ValueTypeMatrix) Vector === // === deriv(node ValueTypeMatrix) Vector ===
func funcDeriv(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcDeriv(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
mat := vals[0].(Matrix) samples := vals[0].(Matrix)[0]
for _, samples := range mat {
// No sense in trying to compute a derivative without at least two points. // No sense in trying to compute a derivative without at least two points.
// Drop this Vector element. // Drop this Vector element.
if len(samples.Points) < 2 { if len(samples.Points) < 2 {
continue return enh.out
} }
// We pass in an arbitrary timestamp that is near the values in use // We pass in an arbitrary timestamp that is near the values in use
// to avoid floating point accuracy issues, see // to avoid floating point accuracy issues, see
// https://github.com/prometheus/prometheus/issues/2674 // https://github.com/prometheus/prometheus/issues/2674
slope, _ := linearRegression(samples.Points, samples.Points[0].T) slope, _ := linearRegression(samples.Points, samples.Points[0].T)
enh.out = append(enh.out, Sample{ return append(enh.out, Sample{
Point: Point{V: slope}, Point: Point{V: slope},
}) })
} }
return enh.out
}
// === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector === // === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector ===
func funcPredictLinear(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcPredictLinear(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
mat := vals[0].(Matrix) samples := vals[0].(Matrix)[0]
duration := vals[1].(Vector)[0].V duration := vals[1].(Vector)[0].V
for _, samples := range mat {
// No sense in trying to predict anything without at least two points. // No sense in trying to predict anything without at least two points.
// Drop this Vector element. // Drop this Vector element.
if len(samples.Points) < 2 { if len(samples.Points) < 2 {
continue return enh.out
} }
slope, intercept := linearRegression(samples.Points, enh.ts) slope, intercept := linearRegression(samples.Points, enh.ts)
enh.out = append(enh.out, Sample{ return append(enh.out, Sample{
Point: Point{V: slope*duration + intercept}, Point: Point{V: slope*duration + intercept},
}) })
} }
return enh.out
}
// === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector === // === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector ===
func funcHistogramQuantile(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcHistogramQuantile(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
@ -678,9 +648,8 @@ func funcHistogramQuantile(vals []Value, args Expressions, enh *EvalNodeHelper)
// === resets(Matrix ValueTypeMatrix) Vector === // === resets(Matrix ValueTypeMatrix) Vector ===
func funcResets(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcResets(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
in := vals[0].(Matrix) samples := vals[0].(Matrix)[0]
for _, samples := range in {
resets := 0 resets := 0
prev := samples.Points[0].V prev := samples.Points[0].V
for _, sample := range samples.Points[1:] { for _, sample := range samples.Points[1:] {
@ -691,18 +660,15 @@ func funcResets(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
prev = current prev = current
} }
enh.out = append(enh.out, Sample{ return append(enh.out, Sample{
Point: Point{V: float64(resets)}, Point: Point{V: float64(resets)},
}) })
} }
return enh.out
}
// === changes(Matrix ValueTypeMatrix) Vector === // === changes(Matrix ValueTypeMatrix) Vector ===
func funcChanges(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcChanges(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
in := vals[0].(Matrix) samples := vals[0].(Matrix)[0]
for _, samples := range in {
changes := 0 changes := 0
prev := samples.Points[0].V prev := samples.Points[0].V
for _, sample := range samples.Points[1:] { for _, sample := range samples.Points[1:] {
@ -713,12 +679,10 @@ func funcChanges(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
prev = current prev = current
} }
enh.out = append(enh.out, Sample{ return append(enh.out, Sample{
Point: Point{V: float64(changes)}, Point: Point{V: float64(changes)},
}) })
} }
return enh.out
}
// === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector === // === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector ===
func funcLabelReplace(vals []Value, args Expressions, enh *EvalNodeHelper) Vector { func funcLabelReplace(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
@ -1297,7 +1261,7 @@ func createLabelsForAbsentFunction(expr Expr) labels.Labels {
} }
for _, v := range empty { for _, v := range empty {
m = labels.NewBuilder(m).Set(v, "").Labels() m = labels.NewBuilder(m).Del(v).Labels()
} }
return m return m
} }