mirror of
https://github.com/prometheus/prometheus
synced 2024-12-25 07:52:28 +00:00
Cleanup PromQL functions (#6551)
* Cleanup PromQL functions The engine ensures, for Matrix functions, that functions are called with exactly one series at the time. Therefore a lot of code can be inlined and we can directly assume the first element of the arguments exists and contains all the samples needed. Signed-off-by: Julien Pivotto <roidelapluie@inuits.eu>
This commit is contained in:
parent
536d416299
commit
577e738986
@ -66,77 +66,74 @@ func extrapolatedRate(vals []Value, args Expressions, enh *EvalNodeHelper, isCou
|
||||
ms := args[0].(*MatrixSelector)
|
||||
|
||||
var (
|
||||
matrix = vals[0].(Matrix)
|
||||
samples = vals[0].(Matrix)[0]
|
||||
rangeStart = enh.ts - durationMilliseconds(ms.Range+ms.Offset)
|
||||
rangeEnd = enh.ts - durationMilliseconds(ms.Offset)
|
||||
)
|
||||
|
||||
for _, samples := range matrix {
|
||||
// No sense in trying to compute a rate without at least two points. Drop
|
||||
// this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
continue
|
||||
}
|
||||
var (
|
||||
counterCorrection float64
|
||||
lastValue float64
|
||||
)
|
||||
for _, sample := range samples.Points {
|
||||
if isCounter && sample.V < lastValue {
|
||||
counterCorrection += lastValue
|
||||
}
|
||||
lastValue = sample.V
|
||||
}
|
||||
resultValue := lastValue - samples.Points[0].V + counterCorrection
|
||||
|
||||
// Duration between first/last samples and boundary of range.
|
||||
durationToStart := float64(samples.Points[0].T-rangeStart) / 1000
|
||||
durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000
|
||||
|
||||
sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000
|
||||
averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1)
|
||||
|
||||
if isCounter && resultValue > 0 && samples.Points[0].V >= 0 {
|
||||
// Counters cannot be negative. If we have any slope at
|
||||
// all (i.e. resultValue went up), we can extrapolate
|
||||
// the zero point of the counter. If the duration to the
|
||||
// zero point is shorter than the durationToStart, we
|
||||
// take the zero point as the start of the series,
|
||||
// thereby avoiding extrapolation to negative counter
|
||||
// values.
|
||||
durationToZero := sampledInterval * (samples.Points[0].V / resultValue)
|
||||
if durationToZero < durationToStart {
|
||||
durationToStart = durationToZero
|
||||
}
|
||||
}
|
||||
|
||||
// If the first/last samples are close to the boundaries of the range,
|
||||
// extrapolate the result. This is as we expect that another sample
|
||||
// will exist given the spacing between samples we've seen thus far,
|
||||
// with an allowance for noise.
|
||||
extrapolationThreshold := averageDurationBetweenSamples * 1.1
|
||||
extrapolateToInterval := sampledInterval
|
||||
|
||||
if durationToStart < extrapolationThreshold {
|
||||
extrapolateToInterval += durationToStart
|
||||
} else {
|
||||
extrapolateToInterval += averageDurationBetweenSamples / 2
|
||||
}
|
||||
if durationToEnd < extrapolationThreshold {
|
||||
extrapolateToInterval += durationToEnd
|
||||
} else {
|
||||
extrapolateToInterval += averageDurationBetweenSamples / 2
|
||||
}
|
||||
resultValue = resultValue * (extrapolateToInterval / sampledInterval)
|
||||
if isRate {
|
||||
resultValue = resultValue / ms.Range.Seconds()
|
||||
}
|
||||
|
||||
enh.out = append(enh.out, Sample{
|
||||
Point: Point{V: resultValue},
|
||||
})
|
||||
// No sense in trying to compute a rate without at least two points. Drop
|
||||
// this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
return enh.out
|
||||
}
|
||||
return enh.out
|
||||
var (
|
||||
counterCorrection float64
|
||||
lastValue float64
|
||||
)
|
||||
for _, sample := range samples.Points {
|
||||
if isCounter && sample.V < lastValue {
|
||||
counterCorrection += lastValue
|
||||
}
|
||||
lastValue = sample.V
|
||||
}
|
||||
resultValue := lastValue - samples.Points[0].V + counterCorrection
|
||||
|
||||
// Duration between first/last samples and boundary of range.
|
||||
durationToStart := float64(samples.Points[0].T-rangeStart) / 1000
|
||||
durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000
|
||||
|
||||
sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000
|
||||
averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1)
|
||||
|
||||
if isCounter && resultValue > 0 && samples.Points[0].V >= 0 {
|
||||
// Counters cannot be negative. If we have any slope at
|
||||
// all (i.e. resultValue went up), we can extrapolate
|
||||
// the zero point of the counter. If the duration to the
|
||||
// zero point is shorter than the durationToStart, we
|
||||
// take the zero point as the start of the series,
|
||||
// thereby avoiding extrapolation to negative counter
|
||||
// values.
|
||||
durationToZero := sampledInterval * (samples.Points[0].V / resultValue)
|
||||
if durationToZero < durationToStart {
|
||||
durationToStart = durationToZero
|
||||
}
|
||||
}
|
||||
|
||||
// If the first/last samples are close to the boundaries of the range,
|
||||
// extrapolate the result. This is as we expect that another sample
|
||||
// will exist given the spacing between samples we've seen thus far,
|
||||
// with an allowance for noise.
|
||||
extrapolationThreshold := averageDurationBetweenSamples * 1.1
|
||||
extrapolateToInterval := sampledInterval
|
||||
|
||||
if durationToStart < extrapolationThreshold {
|
||||
extrapolateToInterval += durationToStart
|
||||
} else {
|
||||
extrapolateToInterval += averageDurationBetweenSamples / 2
|
||||
}
|
||||
if durationToEnd < extrapolationThreshold {
|
||||
extrapolateToInterval += durationToEnd
|
||||
} else {
|
||||
extrapolateToInterval += averageDurationBetweenSamples / 2
|
||||
}
|
||||
resultValue = resultValue * (extrapolateToInterval / sampledInterval)
|
||||
if isRate {
|
||||
resultValue = resultValue / ms.Range.Seconds()
|
||||
}
|
||||
|
||||
return append(enh.out, Sample{
|
||||
Point: Point{V: resultValue},
|
||||
})
|
||||
}
|
||||
|
||||
// === delta(Matrix ValueTypeMatrix) Vector ===
|
||||
@ -165,40 +162,38 @@ func funcIdelta(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||
}
|
||||
|
||||
func instantValue(vals []Value, out Vector, isRate bool) Vector {
|
||||
for _, samples := range vals[0].(Matrix) {
|
||||
// No sense in trying to compute a rate without at least two points. Drop
|
||||
// this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
continue
|
||||
}
|
||||
|
||||
lastSample := samples.Points[len(samples.Points)-1]
|
||||
previousSample := samples.Points[len(samples.Points)-2]
|
||||
|
||||
var resultValue float64
|
||||
if isRate && lastSample.V < previousSample.V {
|
||||
// Counter reset.
|
||||
resultValue = lastSample.V
|
||||
} else {
|
||||
resultValue = lastSample.V - previousSample.V
|
||||
}
|
||||
|
||||
sampledInterval := lastSample.T - previousSample.T
|
||||
if sampledInterval == 0 {
|
||||
// Avoid dividing by 0.
|
||||
continue
|
||||
}
|
||||
|
||||
if isRate {
|
||||
// Convert to per-second.
|
||||
resultValue /= float64(sampledInterval) / 1000
|
||||
}
|
||||
|
||||
out = append(out, Sample{
|
||||
Point: Point{V: resultValue},
|
||||
})
|
||||
samples := vals[0].(Matrix)[0]
|
||||
// No sense in trying to compute a rate without at least two points. Drop
|
||||
// this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
return out
|
||||
}
|
||||
return out
|
||||
|
||||
lastSample := samples.Points[len(samples.Points)-1]
|
||||
previousSample := samples.Points[len(samples.Points)-2]
|
||||
|
||||
var resultValue float64
|
||||
if isRate && lastSample.V < previousSample.V {
|
||||
// Counter reset.
|
||||
resultValue = lastSample.V
|
||||
} else {
|
||||
resultValue = lastSample.V - previousSample.V
|
||||
}
|
||||
|
||||
sampledInterval := lastSample.T - previousSample.T
|
||||
if sampledInterval == 0 {
|
||||
// Avoid dividing by 0.
|
||||
return out
|
||||
}
|
||||
|
||||
if isRate {
|
||||
// Convert to per-second.
|
||||
resultValue /= float64(sampledInterval) / 1000
|
||||
}
|
||||
|
||||
return append(out, Sample{
|
||||
Point: Point{V: resultValue},
|
||||
})
|
||||
}
|
||||
|
||||
// Calculate the trend value at the given index i in raw data d.
|
||||
@ -223,7 +218,7 @@ func calcTrendValue(i int, sf, tf, s0, s1, b float64) float64 {
|
||||
// how trends in historical data will affect the current data. A higher trend factor increases the influence.
|
||||
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing".
|
||||
func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||
mat := vals[0].(Matrix)
|
||||
samples := vals[0].(Matrix)[0]
|
||||
|
||||
// The smoothing factor argument.
|
||||
sf := vals[1].(Vector)[0].V
|
||||
@ -239,40 +234,35 @@ func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector
|
||||
panic(errors.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf))
|
||||
}
|
||||
|
||||
var l int
|
||||
for _, samples := range mat {
|
||||
l = len(samples.Points)
|
||||
l := len(samples.Points)
|
||||
|
||||
// Can't do the smoothing operation with less than two points.
|
||||
if l < 2 {
|
||||
continue
|
||||
}
|
||||
|
||||
var s0, s1, b float64
|
||||
// Set initial values.
|
||||
s1 = samples.Points[0].V
|
||||
b = samples.Points[1].V - samples.Points[0].V
|
||||
|
||||
// Run the smoothing operation.
|
||||
var x, y float64
|
||||
for i := 1; i < l; i++ {
|
||||
|
||||
// Scale the raw value against the smoothing factor.
|
||||
x = sf * samples.Points[i].V
|
||||
|
||||
// Scale the last smoothed value with the trend at this point.
|
||||
b = calcTrendValue(i-1, sf, tf, s0, s1, b)
|
||||
y = (1 - sf) * (s1 + b)
|
||||
|
||||
s0, s1 = s1, x+y
|
||||
}
|
||||
|
||||
enh.out = append(enh.out, Sample{
|
||||
Point: Point{V: s1},
|
||||
})
|
||||
// Can't do the smoothing operation with less than two points.
|
||||
if l < 2 {
|
||||
return enh.out
|
||||
}
|
||||
|
||||
return enh.out
|
||||
var s0, s1, b float64
|
||||
// Set initial values.
|
||||
s1 = samples.Points[0].V
|
||||
b = samples.Points[1].V - samples.Points[0].V
|
||||
|
||||
// Run the smoothing operation.
|
||||
var x, y float64
|
||||
for i := 1; i < l; i++ {
|
||||
|
||||
// Scale the raw value against the smoothing factor.
|
||||
x = sf * samples.Points[i].V
|
||||
|
||||
// Scale the last smoothed value with the trend at this point.
|
||||
b = calcTrendValue(i-1, sf, tf, s0, s1, b)
|
||||
y = (1 - sf) * (s1 + b)
|
||||
|
||||
s0, s1 = s1, x+y
|
||||
}
|
||||
|
||||
return append(enh.out, Sample{
|
||||
Point: Point{V: s1},
|
||||
})
|
||||
}
|
||||
|
||||
// === sort(node ValueTypeVector) Vector ===
|
||||
@ -355,18 +345,11 @@ func funcScalar(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||
}
|
||||
|
||||
func aggrOverTime(vals []Value, enh *EvalNodeHelper, aggrFn func([]Point) float64) Vector {
|
||||
mat := vals[0].(Matrix)
|
||||
el := vals[0].(Matrix)[0]
|
||||
|
||||
for _, el := range mat {
|
||||
if len(el.Points) == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
enh.out = append(enh.out, Sample{
|
||||
Point: Point{V: aggrFn(el.Points)},
|
||||
})
|
||||
}
|
||||
return enh.out
|
||||
return append(enh.out, Sample{
|
||||
Point: Point{V: aggrFn(el.Points)},
|
||||
})
|
||||
}
|
||||
|
||||
// === avg_over_time(Matrix ValueTypeMatrix) Vector ===
|
||||
@ -429,22 +412,15 @@ func funcSumOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector
|
||||
// === quantile_over_time(Matrix ValueTypeMatrix) Vector ===
|
||||
func funcQuantileOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||
q := vals[0].(Vector)[0].V
|
||||
mat := vals[1].(Matrix)
|
||||
el := vals[1].(Matrix)[0]
|
||||
|
||||
for _, el := range mat {
|
||||
if len(el.Points) == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
values := make(vectorByValueHeap, 0, len(el.Points))
|
||||
for _, v := range el.Points {
|
||||
values = append(values, Sample{Point: Point{V: v.V}})
|
||||
}
|
||||
enh.out = append(enh.out, Sample{
|
||||
Point: Point{V: quantile(q, values)},
|
||||
})
|
||||
values := make(vectorByValueHeap, 0, len(el.Points))
|
||||
for _, v := range el.Points {
|
||||
values = append(values, Sample{Point: Point{V: v.V}})
|
||||
}
|
||||
return enh.out
|
||||
return append(enh.out, Sample{
|
||||
Point: Point{V: quantile(q, values)},
|
||||
})
|
||||
}
|
||||
|
||||
// === stddev_over_time(Matrix ValueTypeMatrix) Vector ===
|
||||
@ -588,44 +564,38 @@ func linearRegression(samples []Point, interceptTime int64) (slope, intercept fl
|
||||
|
||||
// === deriv(node ValueTypeMatrix) Vector ===
|
||||
func funcDeriv(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||
mat := vals[0].(Matrix)
|
||||
samples := vals[0].(Matrix)[0]
|
||||
|
||||
for _, samples := range mat {
|
||||
// No sense in trying to compute a derivative without at least two points.
|
||||
// Drop this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
continue
|
||||
}
|
||||
|
||||
// We pass in an arbitrary timestamp that is near the values in use
|
||||
// to avoid floating point accuracy issues, see
|
||||
// https://github.com/prometheus/prometheus/issues/2674
|
||||
slope, _ := linearRegression(samples.Points, samples.Points[0].T)
|
||||
enh.out = append(enh.out, Sample{
|
||||
Point: Point{V: slope},
|
||||
})
|
||||
// No sense in trying to compute a derivative without at least two points.
|
||||
// Drop this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
return enh.out
|
||||
}
|
||||
return enh.out
|
||||
|
||||
// We pass in an arbitrary timestamp that is near the values in use
|
||||
// to avoid floating point accuracy issues, see
|
||||
// https://github.com/prometheus/prometheus/issues/2674
|
||||
slope, _ := linearRegression(samples.Points, samples.Points[0].T)
|
||||
return append(enh.out, Sample{
|
||||
Point: Point{V: slope},
|
||||
})
|
||||
}
|
||||
|
||||
// === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector ===
|
||||
func funcPredictLinear(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||
mat := vals[0].(Matrix)
|
||||
samples := vals[0].(Matrix)[0]
|
||||
duration := vals[1].(Vector)[0].V
|
||||
|
||||
for _, samples := range mat {
|
||||
// No sense in trying to predict anything without at least two points.
|
||||
// Drop this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
continue
|
||||
}
|
||||
slope, intercept := linearRegression(samples.Points, enh.ts)
|
||||
|
||||
enh.out = append(enh.out, Sample{
|
||||
Point: Point{V: slope*duration + intercept},
|
||||
})
|
||||
// No sense in trying to predict anything without at least two points.
|
||||
// Drop this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
return enh.out
|
||||
}
|
||||
return enh.out
|
||||
slope, intercept := linearRegression(samples.Points, enh.ts)
|
||||
|
||||
return append(enh.out, Sample{
|
||||
Point: Point{V: slope*duration + intercept},
|
||||
})
|
||||
}
|
||||
|
||||
// === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector ===
|
||||
@ -678,46 +648,40 @@ func funcHistogramQuantile(vals []Value, args Expressions, enh *EvalNodeHelper)
|
||||
|
||||
// === resets(Matrix ValueTypeMatrix) Vector ===
|
||||
func funcResets(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||
in := vals[0].(Matrix)
|
||||
samples := vals[0].(Matrix)[0]
|
||||
|
||||
for _, samples := range in {
|
||||
resets := 0
|
||||
prev := samples.Points[0].V
|
||||
for _, sample := range samples.Points[1:] {
|
||||
current := sample.V
|
||||
if current < prev {
|
||||
resets++
|
||||
}
|
||||
prev = current
|
||||
resets := 0
|
||||
prev := samples.Points[0].V
|
||||
for _, sample := range samples.Points[1:] {
|
||||
current := sample.V
|
||||
if current < prev {
|
||||
resets++
|
||||
}
|
||||
|
||||
enh.out = append(enh.out, Sample{
|
||||
Point: Point{V: float64(resets)},
|
||||
})
|
||||
prev = current
|
||||
}
|
||||
return enh.out
|
||||
|
||||
return append(enh.out, Sample{
|
||||
Point: Point{V: float64(resets)},
|
||||
})
|
||||
}
|
||||
|
||||
// === changes(Matrix ValueTypeMatrix) Vector ===
|
||||
func funcChanges(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
||||
in := vals[0].(Matrix)
|
||||
samples := vals[0].(Matrix)[0]
|
||||
|
||||
for _, samples := range in {
|
||||
changes := 0
|
||||
prev := samples.Points[0].V
|
||||
for _, sample := range samples.Points[1:] {
|
||||
current := sample.V
|
||||
if current != prev && !(math.IsNaN(current) && math.IsNaN(prev)) {
|
||||
changes++
|
||||
}
|
||||
prev = current
|
||||
changes := 0
|
||||
prev := samples.Points[0].V
|
||||
for _, sample := range samples.Points[1:] {
|
||||
current := sample.V
|
||||
if current != prev && !(math.IsNaN(current) && math.IsNaN(prev)) {
|
||||
changes++
|
||||
}
|
||||
|
||||
enh.out = append(enh.out, Sample{
|
||||
Point: Point{V: float64(changes)},
|
||||
})
|
||||
prev = current
|
||||
}
|
||||
return enh.out
|
||||
|
||||
return append(enh.out, Sample{
|
||||
Point: Point{V: float64(changes)},
|
||||
})
|
||||
}
|
||||
|
||||
// === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector ===
|
||||
@ -1297,7 +1261,7 @@ func createLabelsForAbsentFunction(expr Expr) labels.Labels {
|
||||
}
|
||||
|
||||
for _, v := range empty {
|
||||
m = labels.NewBuilder(m).Set(v, "").Labels()
|
||||
m = labels.NewBuilder(m).Del(v).Labels()
|
||||
}
|
||||
return m
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user