enhance histogram_quantile to get min/max value
Signed-off-by: Ziqi Zhao <zhaoziqi9146@gmail.com>
This commit is contained in:
parent
f93ac97867
commit
42d9169ba1
|
@ -200,28 +200,6 @@ observed values (in this case corresponding to “average request duration”):
|
|||
/
|
||||
histogram_count(rate(http_request_duration_seconds[10m]))
|
||||
|
||||
## `histogram_min()`
|
||||
|
||||
_This function only acts on native histograms, which are an experimental
|
||||
feature. The behavior of this function may change in future versions of
|
||||
Prometheus, including its removal from PromQL._
|
||||
|
||||
`histogram_min(v instant-vector)` returns the estimated minimum value stored in
|
||||
a native histogram. This estimation is based on the lower boundary of the lowest
|
||||
bucket that contains values in the native histogram. Samples that are not native
|
||||
histograms are ignored and do not show up in the returned vector.
|
||||
|
||||
## `histogram_max()`
|
||||
|
||||
_This function only acts on native histograms, which are an experimental
|
||||
feature. The behavior of this function may change in future versions of
|
||||
Prometheus, including its removal from PromQL._
|
||||
|
||||
`histogram_max(v instant-vector)` returns the estimated maximum value stored in
|
||||
a native histogram. This estimation is based on the upper boundary of the highest
|
||||
bucket that contains values in the native histogram. Samples that are not native
|
||||
histograms are ignored and do not show up in the returned vector.
|
||||
|
||||
## `histogram_fraction()`
|
||||
|
||||
_This function only acts on native histograms, which are an experimental
|
||||
|
@ -339,6 +317,12 @@ bound of that bucket is greater than
|
|||
bucket. Otherwise, the upper bound of the lowest bucket is returned for
|
||||
quantiles located in the lowest bucket.
|
||||
|
||||
You can use `histogram_quantile(0, v instant-vector)` to get the estimated minimum value stored in
|
||||
a histogram.
|
||||
|
||||
You can use `histogram_quantile(1, v instant-vector)` to get the estimated maximum value stored in
|
||||
a histogram.
|
||||
|
||||
|
||||
## `holt_winters()`
|
||||
|
||||
|
|
|
@ -615,10 +615,10 @@ func (h *FloatHistogram) NegativeReverseBucketIterator() BucketIterator[float64]
|
|||
// set to the zero threshold.
|
||||
func (h *FloatHistogram) AllBucketIterator() BucketIterator[float64] {
|
||||
return &allFloatBucketIterator{
|
||||
h: h,
|
||||
negIter: h.NegativeReverseBucketIterator(),
|
||||
posIter: h.PositiveBucketIterator(),
|
||||
state: -1,
|
||||
h: h,
|
||||
leftIter: h.NegativeReverseBucketIterator(),
|
||||
rightIter: h.PositiveBucketIterator(),
|
||||
state: -1,
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -628,11 +628,11 @@ func (h *FloatHistogram) AllBucketIterator() BucketIterator[float64] {
|
|||
// overlap with the zero bucket, their upper or lower boundary, respectively, is
|
||||
// set to the zero threshold.
|
||||
func (h *FloatHistogram) AllReverseBucketIterator() BucketIterator[float64] {
|
||||
return &allReverseFloatBucketIterator{
|
||||
h: h,
|
||||
negIter: h.NegativeBucketIterator(),
|
||||
posIter: h.PositiveReverseBucketIterator(),
|
||||
state: 1,
|
||||
return &allFloatBucketIterator{
|
||||
h: h,
|
||||
leftIter: h.PositiveReverseBucketIterator(),
|
||||
rightIter: h.NegativeBucketIterator(),
|
||||
state: -1,
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -917,8 +917,8 @@ func (i *reverseFloatBucketIterator) Next() bool {
|
|||
}
|
||||
|
||||
type allFloatBucketIterator struct {
|
||||
h *FloatHistogram
|
||||
negIter, posIter BucketIterator[float64]
|
||||
h *FloatHistogram
|
||||
leftIter, rightIter BucketIterator[float64]
|
||||
// -1 means we are iterating negative buckets.
|
||||
// 0 means it is time for the zero bucket.
|
||||
// 1 means we are iterating positive buckets.
|
||||
|
@ -930,10 +930,13 @@ type allFloatBucketIterator struct {
|
|||
func (i *allFloatBucketIterator) Next() bool {
|
||||
switch i.state {
|
||||
case -1:
|
||||
if i.negIter.Next() {
|
||||
i.currBucket = i.negIter.At()
|
||||
if i.currBucket.Upper > -i.h.ZeroThreshold {
|
||||
if i.leftIter.Next() {
|
||||
i.currBucket = i.leftIter.At()
|
||||
switch {
|
||||
case i.currBucket.Upper < 0 && i.currBucket.Upper > -i.h.ZeroThreshold:
|
||||
i.currBucket.Upper = -i.h.ZeroThreshold
|
||||
case i.currBucket.Lower > 0 && i.currBucket.Lower < i.h.ZeroThreshold:
|
||||
i.currBucket.Lower = i.h.ZeroThreshold
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
@ -954,10 +957,13 @@ func (i *allFloatBucketIterator) Next() bool {
|
|||
}
|
||||
return i.Next()
|
||||
case 1:
|
||||
if i.posIter.Next() {
|
||||
i.currBucket = i.posIter.At()
|
||||
if i.currBucket.Lower < i.h.ZeroThreshold {
|
||||
if i.rightIter.Next() {
|
||||
i.currBucket = i.rightIter.At()
|
||||
switch {
|
||||
case i.currBucket.Lower > 0 && i.currBucket.Lower < i.h.ZeroThreshold:
|
||||
i.currBucket.Lower = i.h.ZeroThreshold
|
||||
case i.currBucket.Upper < 0 && i.currBucket.Upper > -i.h.ZeroThreshold:
|
||||
i.currBucket.Upper = -i.h.ZeroThreshold
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
@ -971,59 +977,3 @@ func (i *allFloatBucketIterator) Next() bool {
|
|||
func (i *allFloatBucketIterator) At() Bucket[float64] {
|
||||
return i.currBucket
|
||||
}
|
||||
|
||||
type allReverseFloatBucketIterator struct {
|
||||
h *FloatHistogram
|
||||
negIter, posIter BucketIterator[float64]
|
||||
// 1 means we are iterating positive buckets.
|
||||
// 0 means it is time for the zero bucket.
|
||||
// -1 means we are iterating negative buckets.
|
||||
// Anything else means iteration is over.
|
||||
state int8
|
||||
currBucket Bucket[float64]
|
||||
}
|
||||
|
||||
func (i *allReverseFloatBucketIterator) Next() bool {
|
||||
switch i.state {
|
||||
case 1:
|
||||
if i.posIter.Next() {
|
||||
i.currBucket = i.posIter.At()
|
||||
if i.currBucket.Lower < i.h.ZeroThreshold {
|
||||
i.currBucket.Lower = i.h.ZeroThreshold
|
||||
}
|
||||
return true
|
||||
}
|
||||
i.state = 0
|
||||
return i.Next()
|
||||
case 0:
|
||||
i.state = -1
|
||||
if i.h.ZeroCount > 0 {
|
||||
i.currBucket = Bucket[float64]{
|
||||
Lower: -i.h.ZeroThreshold,
|
||||
Upper: i.h.ZeroThreshold,
|
||||
LowerInclusive: true,
|
||||
UpperInclusive: true,
|
||||
Count: i.h.ZeroCount,
|
||||
// Index is irrelevant for the zero bucket.
|
||||
}
|
||||
return true
|
||||
}
|
||||
return i.Next()
|
||||
case -1:
|
||||
if i.negIter.Next() {
|
||||
i.currBucket = i.negIter.At()
|
||||
if i.currBucket.Upper > -i.h.ZeroThreshold {
|
||||
i.currBucket.Upper = -i.h.ZeroThreshold
|
||||
}
|
||||
return true
|
||||
}
|
||||
i.state = 42
|
||||
return false
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
func (i *allReverseFloatBucketIterator) At() Bucket[float64] {
|
||||
return i.currBucket
|
||||
}
|
||||
|
|
|
@ -3295,212 +3295,6 @@ func TestNativeHistogram_HistogramCountAndSum(t *testing.T) {
|
|||
}
|
||||
}
|
||||
|
||||
func TestNativeHistogram_HistogramMinAndMax(t *testing.T) {
|
||||
// TODO(carrieedwards): Integrate histograms into the PromQL testing framework
|
||||
// and write more tests there.
|
||||
cases := []struct {
|
||||
text string
|
||||
// Histogram to test.
|
||||
h *histogram.Histogram
|
||||
// Expected
|
||||
expectedMin float64
|
||||
expectedMax float64
|
||||
}{
|
||||
{
|
||||
text: "all negative buckets",
|
||||
h: &histogram.Histogram{
|
||||
Count: 12,
|
||||
ZeroThreshold: 0.001,
|
||||
Sum: 100, // Does not matter.
|
||||
Schema: 0,
|
||||
NegativeSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
NegativeBuckets: []int64{2, 1, -2, 3},
|
||||
},
|
||||
expectedMin: -16,
|
||||
expectedMax: -0.5,
|
||||
},
|
||||
{
|
||||
text: "all positive buckets",
|
||||
h: &histogram.Histogram{
|
||||
Count: 12,
|
||||
ZeroThreshold: 0.001,
|
||||
Sum: 100, // Does not matter.
|
||||
Schema: 0,
|
||||
PositiveSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
PositiveBuckets: []int64{2, 1, -2, 3},
|
||||
},
|
||||
expectedMin: 0.5,
|
||||
expectedMax: 16,
|
||||
},
|
||||
{
|
||||
text: "all negative buckets",
|
||||
h: &histogram.Histogram{
|
||||
Count: 12,
|
||||
ZeroThreshold: 0.001,
|
||||
Sum: 100, // Does not matter.
|
||||
Schema: 0,
|
||||
NegativeSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
NegativeBuckets: []int64{2, 1, -2, 3},
|
||||
},
|
||||
expectedMin: -16,
|
||||
expectedMax: -0.5,
|
||||
},
|
||||
{
|
||||
text: "both positive and negative buckets",
|
||||
h: &histogram.Histogram{
|
||||
Count: 24,
|
||||
ZeroThreshold: 0.001,
|
||||
Sum: 100, // Does not matter.
|
||||
Schema: 0,
|
||||
PositiveSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
PositiveBuckets: []int64{2, 1, -2, 3},
|
||||
NegativeSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
NegativeBuckets: []int64{2, 1, -2, 3},
|
||||
},
|
||||
expectedMin: -16,
|
||||
expectedMax: 16,
|
||||
},
|
||||
{
|
||||
text: "all positive buckets with zero bucket count",
|
||||
h: &histogram.Histogram{
|
||||
Count: 12,
|
||||
ZeroCount: 2,
|
||||
ZeroThreshold: 0.001,
|
||||
Sum: 100, // Does not matter.
|
||||
Schema: 0,
|
||||
PositiveSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
PositiveBuckets: []int64{2, 1, -2, 3},
|
||||
},
|
||||
expectedMin: -0.001,
|
||||
expectedMax: 16,
|
||||
},
|
||||
{
|
||||
text: "all negative buckets with zero bucket count",
|
||||
h: &histogram.Histogram{
|
||||
Count: 12,
|
||||
ZeroCount: 2,
|
||||
ZeroThreshold: 0.001,
|
||||
Sum: 100, // Does not matter.
|
||||
Schema: 0,
|
||||
NegativeSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
NegativeBuckets: []int64{2, 1, -2, 3},
|
||||
},
|
||||
expectedMin: -16,
|
||||
expectedMax: 0.001,
|
||||
},
|
||||
{
|
||||
text: "both positive and negative buckets with zero bucket count",
|
||||
h: &histogram.Histogram{
|
||||
Count: 24,
|
||||
ZeroCount: 4,
|
||||
ZeroThreshold: 0.001,
|
||||
Sum: 100, // Does not matter.
|
||||
Schema: 0,
|
||||
PositiveSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
PositiveBuckets: []int64{2, 1, -2, 3},
|
||||
NegativeSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
NegativeBuckets: []int64{2, 1, -2, 3},
|
||||
},
|
||||
expectedMin: -16,
|
||||
expectedMax: 16,
|
||||
},
|
||||
{
|
||||
text: "empty histogram",
|
||||
h: &histogram.Histogram{},
|
||||
expectedMin: math.NaN(),
|
||||
expectedMax: math.NaN(),
|
||||
},
|
||||
}
|
||||
|
||||
test, err := NewTest(t, "")
|
||||
require.NoError(t, err)
|
||||
t.Cleanup(test.Close)
|
||||
idx := int64(0)
|
||||
for _, floatHisto := range []bool{true, false} {
|
||||
for _, c := range cases {
|
||||
t.Run(fmt.Sprintf("%s floatHistogram=%t", c.text, floatHisto), func(t *testing.T) {
|
||||
seriesName := "sparse_histogram_series"
|
||||
lbls := labels.FromStrings("__name__", seriesName)
|
||||
engine := test.QueryEngine()
|
||||
|
||||
ts := idx * int64(10*time.Minute/time.Millisecond)
|
||||
app := test.Storage().Appender(context.TODO())
|
||||
if floatHisto {
|
||||
_, err = app.AppendHistogram(0, lbls, ts, nil, c.h.ToFloat())
|
||||
} else {
|
||||
_, err = app.AppendHistogram(0, lbls, ts, c.h, nil)
|
||||
}
|
||||
require.NoError(t, err)
|
||||
require.NoError(t, app.Commit())
|
||||
|
||||
queryString := fmt.Sprintf("histogram_min(%s)", seriesName)
|
||||
qry, err := engine.NewInstantQuery(test.Queryable(), nil, queryString, timestamp.Time(ts))
|
||||
require.NoError(t, err)
|
||||
|
||||
res := qry.Exec(test.Context())
|
||||
require.NoError(t, res.Err)
|
||||
|
||||
vector, err := res.Vector()
|
||||
require.NoError(t, err)
|
||||
|
||||
require.Len(t, vector, 1)
|
||||
require.Nil(t, vector[0].H)
|
||||
if math.IsNaN(c.expectedMin) {
|
||||
require.True(t, math.IsNaN(vector[0].V))
|
||||
} else {
|
||||
require.Equal(t, float64(c.expectedMin), vector[0].V)
|
||||
}
|
||||
|
||||
queryString = fmt.Sprintf("histogram_max(%s)", seriesName)
|
||||
qry, err = engine.NewInstantQuery(test.Queryable(), nil, queryString, timestamp.Time(ts))
|
||||
require.NoError(t, err)
|
||||
|
||||
res = qry.Exec(test.Context())
|
||||
require.NoError(t, res.Err)
|
||||
|
||||
vector, err = res.Vector()
|
||||
require.NoError(t, err)
|
||||
|
||||
require.Len(t, vector, 1)
|
||||
require.Nil(t, vector[0].H)
|
||||
if math.IsNaN(c.expectedMax) {
|
||||
require.True(t, math.IsNaN(vector[0].V))
|
||||
} else {
|
||||
require.Equal(t, c.expectedMax, vector[0].V)
|
||||
}
|
||||
idx++
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestNativeHistogram_HistogramQuantile(t *testing.T) {
|
||||
// TODO(codesome): Integrate histograms into the PromQL testing framework
|
||||
// and write more tests there.
|
||||
|
|
|
@ -996,66 +996,6 @@ func funcHistogramSum(vals []parser.Value, args parser.Expressions, enh *EvalNod
|
|||
return enh.Out
|
||||
}
|
||||
|
||||
// === histogram_min(Vector parser.ValueTypeVector) Vector ===
|
||||
func funcHistogramMin(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
inVec := vals[0].(Vector)
|
||||
|
||||
for _, sample := range inVec {
|
||||
// Skip non-histogram samples.
|
||||
if sample.H == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
min := math.NaN() // initialize to NaN in case histogram is empty
|
||||
|
||||
it := sample.H.AllBucketIterator() // AllBucketIterator starts at the lowest bucket in the native histogram
|
||||
for it.Next() {
|
||||
bucket := it.At()
|
||||
// Find the lower limit of the lowest populated bucket
|
||||
if bucket.Count > 0 {
|
||||
min = bucket.Lower
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(sample.Metric),
|
||||
Point: Point{V: min},
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
}
|
||||
|
||||
// === histogram_max(Vector parser.ValueTypeVector) Vector ===
|
||||
func funcHistogramMax(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
inVec := vals[0].(Vector)
|
||||
|
||||
for _, sample := range inVec {
|
||||
// Skip non-histogram samples.
|
||||
if sample.H == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
max := math.NaN() // initialize to NaN in case histogram is empty
|
||||
|
||||
it := sample.H.AllReverseBucketIterator() // AllReverseBucketIterator starts at the highest bucket in the native histogram
|
||||
for it.Next() {
|
||||
bucket := it.At()
|
||||
// Find the upper limit of the highest populated bucket
|
||||
if bucket.Count > 0 {
|
||||
max = bucket.Upper
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(sample.Metric),
|
||||
Point: Point{V: max},
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
}
|
||||
|
||||
// === histogram_fraction(lower, upper parser.ValueTypeScalar, Vector parser.ValueTypeVector) Vector ===
|
||||
func funcHistogramFraction(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
lower := vals[0].(Vector)[0].F
|
||||
|
@ -1435,8 +1375,6 @@ var FunctionCalls = map[string]FunctionCall{
|
|||
"floor": funcFloor,
|
||||
"histogram_count": funcHistogramCount,
|
||||
"histogram_fraction": funcHistogramFraction,
|
||||
"histogram_max": funcHistogramMax,
|
||||
"histogram_min": funcHistogramMin,
|
||||
"histogram_quantile": funcHistogramQuantile,
|
||||
"histogram_sum": funcHistogramSum,
|
||||
"holt_winters": funcHoltWinters,
|
||||
|
|
|
@ -173,16 +173,6 @@ var Functions = map[string]*Function{
|
|||
ArgTypes: []ValueType{ValueTypeVector},
|
||||
ReturnType: ValueTypeVector,
|
||||
},
|
||||
"histogram_min": {
|
||||
Name: "histogram_min",
|
||||
ArgTypes: []ValueType{ValueTypeVector},
|
||||
ReturnType: ValueTypeVector,
|
||||
},
|
||||
"histogram_max": {
|
||||
Name: "histogram_max",
|
||||
ArgTypes: []ValueType{ValueTypeVector},
|
||||
ReturnType: ValueTypeVector,
|
||||
},
|
||||
"histogram_fraction": {
|
||||
Name: "histogram_fraction",
|
||||
ArgTypes: []ValueType{ValueTypeScalar, ValueTypeScalar, ValueTypeVector},
|
||||
|
|
|
@ -158,9 +158,21 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
|
|||
var (
|
||||
bucket histogram.Bucket[float64]
|
||||
count float64
|
||||
it = h.AllBucketIterator()
|
||||
rank = q * h.Count
|
||||
it histogram.BucketIterator[float64]
|
||||
rank float64
|
||||
)
|
||||
|
||||
// if there are NaN observations in the histogram (h.Sum is NaN), use the forward iterator
|
||||
// if the q < 0.5, use the forward iterator
|
||||
// if the q >= 0.5, use the reverse iterator
|
||||
if math.IsNaN(h.Sum) || q < 0.5 {
|
||||
it = h.AllBucketIterator()
|
||||
rank = q * h.Count
|
||||
} else {
|
||||
it = h.AllReverseBucketIterator()
|
||||
rank = (1 - q) * h.Count
|
||||
}
|
||||
|
||||
for it.Next() {
|
||||
bucket = it.At()
|
||||
count += bucket.Count
|
||||
|
@ -193,7 +205,15 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
|
|||
return bucket.Upper
|
||||
}
|
||||
|
||||
rank -= count - bucket.Count
|
||||
// if there are NaN observations in the histogram (h.Sum is NaN), use the forward iterator
|
||||
// if the q < 0.5, use the forward iterator
|
||||
// if the q >= 0.5, use the reverse iterator
|
||||
if math.IsNaN(h.Sum) || q < 0.5 {
|
||||
rank -= count - bucket.Count
|
||||
} else {
|
||||
rank = count - rank
|
||||
}
|
||||
|
||||
// TODO(codesome): Use a better estimation than linear.
|
||||
return bucket.Lower + (bucket.Upper-bucket.Lower)*(rank/bucket.Count)
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue