mirror of
https://github.com/prometheus/prometheus
synced 2024-12-27 00:53:12 +00:00
promql: refactor: split topk/bottomk from sum/avg/etc
They aggregate results in different ways. topk/bottomk don't consider histograms so can simplify data collection. Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
This commit is contained in:
parent
74eed67ef6
commit
2f03acbafc
294
promql/engine.go
294
promql/engine.go
@ -1299,6 +1299,7 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
||||
groupToResultIndex := make(map[uint64]int)
|
||||
seriesToResult := make([]int, len(inputMatrix))
|
||||
orderedResult := make([]*groupedAggregation, 0, 16)
|
||||
var result Matrix
|
||||
|
||||
for si, series := range inputMatrix {
|
||||
var groupingKey uint64
|
||||
@ -1306,8 +1307,11 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
||||
index, ok := groupToResultIndex[groupingKey]
|
||||
// Add a new group if it doesn't exist.
|
||||
if !ok {
|
||||
m := generateGroupingLabels(enh, series.Metric, aggExpr.Without, sortedGrouping)
|
||||
newAgg := &groupedAggregation{labels: m}
|
||||
if aggExpr.Op != parser.TOPK && aggExpr.Op != parser.BOTTOMK {
|
||||
m := generateGroupingLabels(enh, series.Metric, aggExpr.Without, sortedGrouping)
|
||||
result = append(result, Series{Metric: m})
|
||||
}
|
||||
newAgg := &groupedAggregation{}
|
||||
index = len(orderedResult)
|
||||
groupToResultIndex[groupingKey] = index
|
||||
orderedResult = append(orderedResult, newAgg)
|
||||
@ -1315,7 +1319,11 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
||||
seriesToResult[si] = index
|
||||
}
|
||||
|
||||
seriess := make(map[uint64]Series, len(inputMatrix)) // Output series by series hash.
|
||||
var seriess map[uint64]Series
|
||||
switch aggExpr.Op {
|
||||
case parser.TOPK, parser.BOTTOMK:
|
||||
seriess = make(map[uint64]Series, len(inputMatrix)) // Output series by series hash.
|
||||
}
|
||||
|
||||
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
|
||||
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
|
||||
@ -1326,25 +1334,44 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
||||
|
||||
// Make the function call.
|
||||
enh.Ts = ts
|
||||
result, ws := ev.aggregation(aggExpr, param, inputMatrix, seriesToResult, orderedResult, enh, seriess)
|
||||
var ws annotations.Annotations
|
||||
switch aggExpr.Op {
|
||||
case parser.TOPK, parser.BOTTOMK:
|
||||
result, ws = ev.aggregationK(aggExpr, param, inputMatrix, seriesToResult, orderedResult, enh, seriess)
|
||||
// If this could be an instant query, shortcut so as not to change sort order.
|
||||
if ev.endTimestamp == ev.startTimestamp {
|
||||
return result, ws
|
||||
}
|
||||
default:
|
||||
ws = ev.aggregation(aggExpr, param, inputMatrix, result, seriesToResult, orderedResult, enh)
|
||||
}
|
||||
|
||||
warnings.Merge(ws)
|
||||
|
||||
// If this could be an instant query, shortcut so as not to change sort order.
|
||||
if ev.endTimestamp == ev.startTimestamp {
|
||||
return result, warnings
|
||||
}
|
||||
if ev.currentSamples > ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
}
|
||||
|
||||
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
|
||||
mat := make(Matrix, 0, len(seriess))
|
||||
for _, ss := range seriess {
|
||||
mat = append(mat, ss)
|
||||
switch aggExpr.Op {
|
||||
case parser.TOPK, parser.BOTTOMK:
|
||||
result = make(Matrix, 0, len(seriess))
|
||||
for _, ss := range seriess {
|
||||
result = append(result, ss)
|
||||
}
|
||||
default:
|
||||
// Remove empty result rows.
|
||||
dst := 0
|
||||
for _, series := range result {
|
||||
if len(series.Floats) > 0 || len(series.Histograms) > 0 {
|
||||
result[dst] = series
|
||||
dst++
|
||||
}
|
||||
}
|
||||
result = result[:dst]
|
||||
}
|
||||
return mat, warnings
|
||||
return result, warnings
|
||||
}
|
||||
|
||||
// evalSubquery evaluates given SubqueryExpr and returns an equivalent
|
||||
@ -2698,25 +2725,14 @@ type groupedAggregation struct {
|
||||
reverseHeap vectorByReverseValueHeap
|
||||
}
|
||||
|
||||
// aggregation evaluates an aggregation operation on a Vector. The provided grouping labels
|
||||
// must be sorted.
|
||||
func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix Matrix, seriesToResult []int, orderedResult []*groupedAggregation, enh *EvalNodeHelper, seriess map[uint64]Series) (Matrix, annotations.Annotations) {
|
||||
// aggregation evaluates sum, avg, count, stdvar, stddev or quantile at one timestep on inputMatrix.
|
||||
// These functions produce one output series for each group specified in the expression, with just the labels from `by(...)`.
|
||||
// outputMatrix should be already populated with grouping labels; groups is one-to-one with outputMatrix.
|
||||
// seriesToResult maps inputMatrix indexes to outputMatrix indexes.
|
||||
func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix, outputMatrix Matrix, seriesToResult []int, orderedResult []*groupedAggregation, enh *EvalNodeHelper) annotations.Annotations {
|
||||
op := e.Op
|
||||
var annos annotations.Annotations
|
||||
seen := make([]bool, len(orderedResult)) // Which output groups were seen in the input at this timestamp.
|
||||
k := 1
|
||||
if op == parser.TOPK || op == parser.BOTTOMK {
|
||||
if !convertibleToInt64(q) {
|
||||
ev.errorf("Scalar value %v overflows int64", q)
|
||||
}
|
||||
k = int(q)
|
||||
if k > len(inputMatrix) {
|
||||
k = len(inputMatrix)
|
||||
}
|
||||
if k < 1 {
|
||||
return nil, annos
|
||||
}
|
||||
}
|
||||
if op == parser.QUANTILE {
|
||||
if math.IsNaN(q) || q < 0 || q > 1 {
|
||||
annos.Add(annotations.NewInvalidQuantileWarning(q, e.Param.PositionRange()))
|
||||
@ -2733,7 +2749,6 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
|
||||
// Initialize this group if it's the first time we've seen it.
|
||||
if !seen[seriesToResult[si]] {
|
||||
*group = groupedAggregation{
|
||||
labels: group.labels,
|
||||
floatValue: s.F,
|
||||
floatMean: s.F,
|
||||
groupCount: 1,
|
||||
@ -2754,18 +2769,12 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
|
||||
switch op {
|
||||
case parser.STDVAR, parser.STDDEV:
|
||||
group.floatValue = 0
|
||||
case parser.TOPK, parser.QUANTILE:
|
||||
group.heap = make(vectorByValueHeap, 1, k)
|
||||
case parser.QUANTILE:
|
||||
group.heap = make(vectorByValueHeap, 1)
|
||||
group.heap[0] = Sample{
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
}
|
||||
case parser.BOTTOMK:
|
||||
group.reverseHeap = make(vectorByReverseValueHeap, 1, k)
|
||||
group.reverseHeap[0] = Sample{
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
}
|
||||
case parser.GROUP:
|
||||
group.floatValue = 1
|
||||
}
|
||||
@ -2848,44 +2857,6 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
|
||||
group.floatValue += delta * (s.F - group.floatMean)
|
||||
}
|
||||
|
||||
case parser.TOPK:
|
||||
// We build a heap of up to k elements, with the smallest element at heap[0].
|
||||
switch {
|
||||
case len(group.heap) < k:
|
||||
heap.Push(&group.heap, &Sample{
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
})
|
||||
case group.heap[0].F < s.F || (math.IsNaN(group.heap[0].F) && !math.IsNaN(s.F)):
|
||||
// This new element is bigger than the previous smallest element - overwrite that.
|
||||
group.heap[0] = Sample{
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
}
|
||||
if k > 1 {
|
||||
heap.Fix(&group.heap, 0) // Maintain the heap invariant.
|
||||
}
|
||||
}
|
||||
|
||||
case parser.BOTTOMK:
|
||||
// We build a heap of up to k elements, with the biggest element at heap[0].
|
||||
switch {
|
||||
case len(group.reverseHeap) < k:
|
||||
heap.Push(&group.reverseHeap, &Sample{
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
})
|
||||
case group.reverseHeap[0].F > s.F || (math.IsNaN(group.reverseHeap[0].F) && !math.IsNaN(s.F)):
|
||||
// This new element is smaller than the previous biggest element - overwrite that.
|
||||
group.reverseHeap[0] = Sample{
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
}
|
||||
if k > 1 {
|
||||
heap.Fix(&group.reverseHeap, 0) // Maintain the heap invariant.
|
||||
}
|
||||
}
|
||||
|
||||
case parser.QUANTILE:
|
||||
group.heap = append(group.heap, s)
|
||||
|
||||
@ -2894,32 +2865,9 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
|
||||
}
|
||||
}
|
||||
|
||||
// Construct the result from the aggregated groups.
|
||||
// Construct the output matrix from the aggregated groups.
|
||||
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
|
||||
var mat Matrix
|
||||
if ev.endTimestamp == ev.startTimestamp {
|
||||
mat = make(Matrix, 0, len(orderedResult))
|
||||
}
|
||||
|
||||
add := func(lbls labels.Labels, f float64, h *histogram.FloatHistogram) {
|
||||
// If this could be an instant query, add directly to the matrix so the result is in consistent order.
|
||||
if ev.endTimestamp == ev.startTimestamp {
|
||||
if h == nil {
|
||||
mat = append(mat, Series{Metric: lbls, Floats: []FPoint{{T: enh.Ts, F: f}}})
|
||||
} else {
|
||||
mat = append(mat, Series{Metric: lbls, Histograms: []HPoint{{T: enh.Ts, H: h}}})
|
||||
}
|
||||
} else {
|
||||
// Otherwise the results are added into seriess elements.
|
||||
hash := lbls.Hash()
|
||||
ss, ok := seriess[hash]
|
||||
if !ok {
|
||||
ss = Series{Metric: lbls}
|
||||
}
|
||||
addToSeries(&ss, enh.Ts, f, h, numSteps)
|
||||
seriess[hash] = ss
|
||||
}
|
||||
}
|
||||
for ri, aggr := range orderedResult {
|
||||
if !seen[ri] {
|
||||
continue
|
||||
@ -2946,26 +2894,6 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
|
||||
case parser.STDDEV:
|
||||
aggr.floatValue = math.Sqrt(aggr.floatValue / float64(aggr.groupCount))
|
||||
|
||||
case parser.TOPK:
|
||||
// The heap keeps the lowest value on top, so reverse it.
|
||||
if len(aggr.heap) > 1 {
|
||||
sort.Sort(sort.Reverse(aggr.heap))
|
||||
}
|
||||
for _, v := range aggr.heap {
|
||||
add(v.Metric, v.F, nil)
|
||||
}
|
||||
continue // Bypass default append.
|
||||
|
||||
case parser.BOTTOMK:
|
||||
// The heap keeps the highest value on top, so reverse it.
|
||||
if len(aggr.reverseHeap) > 1 {
|
||||
sort.Sort(sort.Reverse(aggr.reverseHeap))
|
||||
}
|
||||
for _, v := range aggr.reverseHeap {
|
||||
add(v.Metric, v.F, nil)
|
||||
}
|
||||
continue // Bypass default append.
|
||||
|
||||
case parser.QUANTILE:
|
||||
aggr.floatValue = quantile(q, aggr.heap)
|
||||
|
||||
@ -2982,7 +2910,133 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix
|
||||
// For other aggregations, we already have the right value.
|
||||
}
|
||||
|
||||
add(aggr.labels, aggr.floatValue, aggr.histogramValue)
|
||||
ss := &outputMatrix[ri]
|
||||
addToSeries(ss, enh.Ts, aggr.floatValue, aggr.histogramValue, numSteps)
|
||||
}
|
||||
|
||||
return annos
|
||||
}
|
||||
|
||||
// aggregationK evaluates topk or bottomk at one timestep on inputMatrix.
|
||||
// Output that has the same labels as the input, but just k of them per group.
|
||||
// seriesToResult maps inputMatrix indexes to groups indexes.
|
||||
// For an instant query, returns a Matrix in descending order for topk or ascending for bottomk.
|
||||
// For a range query, aggregates output in the seriess map.
|
||||
func (ev *evaluator) aggregationK(e *parser.AggregateExpr, q float64, inputMatrix Matrix, seriesToResult []int, orderedResult []*groupedAggregation, enh *EvalNodeHelper, seriess map[uint64]Series) (Matrix, annotations.Annotations) {
|
||||
op := e.Op
|
||||
var annos annotations.Annotations
|
||||
seen := make([]bool, len(orderedResult)) // Which output groups were seen in the input at this timestamp.
|
||||
if !convertibleToInt64(q) {
|
||||
ev.errorf("Scalar value %v overflows int64", q)
|
||||
}
|
||||
k := int(q)
|
||||
if k > len(inputMatrix) {
|
||||
k = len(inputMatrix)
|
||||
}
|
||||
if k < 1 {
|
||||
return nil, annos
|
||||
}
|
||||
|
||||
for si := range inputMatrix {
|
||||
s, ok := ev.nextSample(enh.Ts, inputMatrix, si)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
|
||||
group := orderedResult[seriesToResult[si]]
|
||||
// Initialize this group if it's the first time we've seen it.
|
||||
if !seen[seriesToResult[si]] {
|
||||
*group = groupedAggregation{}
|
||||
|
||||
switch op {
|
||||
case parser.TOPK:
|
||||
group.heap = make(vectorByValueHeap, 1, k)
|
||||
group.heap[0] = s
|
||||
case parser.BOTTOMK:
|
||||
group.reverseHeap = make(vectorByReverseValueHeap, 1, k)
|
||||
group.reverseHeap[0] = s
|
||||
}
|
||||
seen[seriesToResult[si]] = true
|
||||
continue
|
||||
}
|
||||
|
||||
switch op {
|
||||
case parser.TOPK:
|
||||
// We build a heap of up to k elements, with the smallest element at heap[0].
|
||||
switch {
|
||||
case len(group.heap) < k:
|
||||
heap.Push(&group.heap, &s)
|
||||
case group.heap[0].F < s.F || (math.IsNaN(group.heap[0].F) && !math.IsNaN(s.F)):
|
||||
// This new element is bigger than the previous smallest element - overwrite that.
|
||||
group.heap[0] = s
|
||||
if k > 1 {
|
||||
heap.Fix(&group.heap, 0) // Maintain the heap invariant.
|
||||
}
|
||||
}
|
||||
|
||||
case parser.BOTTOMK:
|
||||
// We build a heap of up to k elements, with the biggest element at heap[0].
|
||||
switch {
|
||||
case len(group.reverseHeap) < k:
|
||||
heap.Push(&group.reverseHeap, &s)
|
||||
case group.reverseHeap[0].F > s.F || (math.IsNaN(group.reverseHeap[0].F) && !math.IsNaN(s.F)):
|
||||
// This new element is smaller than the previous biggest element - overwrite that.
|
||||
group.reverseHeap[0] = s
|
||||
if k > 1 {
|
||||
heap.Fix(&group.reverseHeap, 0) // Maintain the heap invariant.
|
||||
}
|
||||
}
|
||||
|
||||
default:
|
||||
panic(fmt.Errorf("expected aggregation operator but got %q", op))
|
||||
}
|
||||
}
|
||||
|
||||
// Construct the result from the aggregated groups.
|
||||
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
|
||||
var mat Matrix
|
||||
if ev.endTimestamp == ev.startTimestamp {
|
||||
mat = make(Matrix, 0, len(orderedResult))
|
||||
}
|
||||
|
||||
add := func(lbls labels.Labels, f float64) {
|
||||
// If this could be an instant query, add directly to the matrix so the result is in consistent order.
|
||||
if ev.endTimestamp == ev.startTimestamp {
|
||||
mat = append(mat, Series{Metric: lbls, Floats: []FPoint{{T: enh.Ts, F: f}}})
|
||||
} else {
|
||||
// Otherwise the results are added into seriess elements.
|
||||
hash := lbls.Hash()
|
||||
ss, ok := seriess[hash]
|
||||
if !ok {
|
||||
ss = Series{Metric: lbls}
|
||||
}
|
||||
addToSeries(&ss, enh.Ts, f, nil, numSteps)
|
||||
seriess[hash] = ss
|
||||
}
|
||||
}
|
||||
for ri, aggr := range orderedResult {
|
||||
if !seen[ri] {
|
||||
continue
|
||||
}
|
||||
switch op {
|
||||
case parser.TOPK:
|
||||
// The heap keeps the lowest value on top, so reverse it.
|
||||
if len(aggr.heap) > 1 {
|
||||
sort.Sort(sort.Reverse(aggr.heap))
|
||||
}
|
||||
for _, v := range aggr.heap {
|
||||
add(v.Metric, v.F)
|
||||
}
|
||||
|
||||
case parser.BOTTOMK:
|
||||
// The heap keeps the highest value on top, so reverse it.
|
||||
if len(aggr.reverseHeap) > 1 {
|
||||
sort.Sort(sort.Reverse(aggr.reverseHeap))
|
||||
}
|
||||
for _, v := range aggr.reverseHeap {
|
||||
add(v.Metric, v.F)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return mat, annos
|
||||
|
Loading…
Reference in New Issue
Block a user