Refactor scrape() to break out the major components.

This puts us on the road to dropping the bash tests and doing it all in
Go.
This commit is contained in:
Will Rouesnel 2016-11-17 02:16:45 +11:00
parent 53ad0efbbb
commit a95fad8d1e
1 changed files with 122 additions and 116 deletions

View File

@ -10,13 +10,14 @@ import (
"os"
"strconv"
"time"
"regexp"
"errors"
"gopkg.in/yaml.v2"
_ "github.com/lib/pq"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/common/log"
"regexp"
)
var Version string = "0.0.1"
@ -589,6 +590,119 @@ func newDesc(subsystem, name, help string) *prometheus.Desc {
)
}
// Query the SHOW variables from the query map
// TODO: make this more functional
func (e *Exporter) queryShowVariables(ch chan<- prometheus.Metric, db *sql.DB) {
log.Debugln("Querying SHOW variables")
for _, mapping := range e.variableMap {
for columnName, columnMapping := range mapping.columnMappings {
// Check for a discard request on this value
if columnMapping.discard {
continue
}
// Use SHOW to get the value
row := db.QueryRow(fmt.Sprintf("SHOW %s;", columnName))
var val interface{}
err := row.Scan(&val)
if err != nil {
log.Errorln("Error scanning runtime variable:", columnName, err)
continue
}
fval, ok := columnMapping.conversion(val)
if !ok {
e.error.Set(1)
log.Errorln("Unexpected error parsing column: ", namespace, columnName, val)
continue
}
ch <- prometheus.MustNewConstMetric(columnMapping.desc, columnMapping.vtype, fval)
}
}
}
func queryNamespaceMapping(ch chan<- prometheus.Metric, db *sql.DB, namespace string, mapping MetricMapNamespace) error {
query, er := queryOverrides[namespace]
if er == false {
query = fmt.Sprintf("SELECT * FROM %s;", namespace)
}
// Don't fail on a bad scrape of one metric
rows, err := db.Query(query)
if err != nil {
return errors.New(fmt.Sprintln("Error running query on database: ", namespace, err))
}
defer rows.Close()
var columnNames []string
columnNames, err = rows.Columns()
if err != nil {
return errors.New(fmt.Sprintln("Error retrieving column list for: ", namespace, err))
}
// Make a lookup map for the column indices
var columnIdx = make(map[string]int, len(columnNames))
for i, n := range columnNames {
columnIdx[n] = i
}
var columnData = make([]interface{}, len(columnNames))
var scanArgs = make([]interface{}, len(columnNames))
for i := range columnData {
scanArgs[i] = &columnData[i]
}
for rows.Next() {
err = rows.Scan(scanArgs...)
if err != nil {
return errors.New(fmt.Sprintln("Error retrieving rows:", namespace, err))
}
// Get the label values for this row
var labels = make([]string, len(mapping.labels))
for idx, columnName := range mapping.labels {
labels[idx], _ = dbToString(columnData[columnIdx[columnName]])
}
// Loop over column names, and match to scan data. Unknown columns
// will be filled with an untyped metric number *if* they can be
// converted to float64s. NULLs are allowed and treated as NaN.
for idx, columnName := range columnNames {
if metricMapping, ok := mapping.columnMappings[columnName]; ok {
// Is this a metricy metric?
if metricMapping.discard {
continue
}
value, ok := dbToFloat64(columnData[idx])
if !ok {
log.Errorln("Unexpected error parsing column: ", namespace, columnName, columnData[idx])
continue
}
// Generate the metric
ch <- prometheus.MustNewConstMetric(metricMapping.desc, metricMapping.vtype, value, labels...)
} else {
// Unknown metric. Report as untyped if scan to float64 works, else note an error too.
desc := prometheus.NewDesc(fmt.Sprintf("%s_%s", namespace, columnName), fmt.Sprintf("Unknown metric from %s", namespace), nil, nil)
// Its not an error to fail here, since the values are
// unexpected anyway.
value, ok := dbToFloat64(columnData[idx])
if !ok {
log.Warnln("Unparseable column type - discarding: ", namespace, columnName, err)
continue
}
ch <- prometheus.MustNewConstMetric(desc, prometheus.UntypedValue, value, labels...)
}
}
}
return nil
}
func (e *Exporter) scrape(ch chan<- prometheus.Metric) {
defer func(begun time.Time) {
e.duration.Set(time.Since(begun).Seconds())
@ -619,124 +733,16 @@ func (e *Exporter) scrape(ch chan<- prometheus.Metric) {
versionDesc := prometheus.NewDesc(fmt.Sprintf("%s_%s", namespace, staticLabelName), "Version string as reported by postgres", []string{"version", "short_version"}, nil)
ch <- prometheus.MustNewConstMetric(versionDesc, prometheus.UntypedValue, 1, versionString, shortVersion)
log.Debugln("Querying SHOW variables")
for _, mapping := range e.variableMap {
for columnName, columnMapping := range mapping.columnMappings {
// Check for a discard request on this value
if columnMapping.discard {
continue
}
// Use SHOW to get the value
row := db.QueryRow(fmt.Sprintf("SHOW %s;", columnName))
var val interface{}
err := row.Scan(&val)
if err != nil {
log.Errorln("Error scanning runtime variable:", columnName, err)
continue
}
fval, ok := columnMapping.conversion(val)
if !ok {
e.error.Set(1)
log.Errorln("Unexpected error parsing column: ", namespace, columnName, val)
continue
}
ch <- prometheus.MustNewConstMetric(columnMapping.desc, columnMapping.vtype, fval)
}
}
// Handle querying the show variables
e.queryShowVariables(ch, db)
for namespace, mapping := range e.metricMap {
log.Debugln("Querying namespace: ", namespace)
func() {
query, er := queryOverrides[namespace]
if er == false {
query = fmt.Sprintf("SELECT * FROM %s;", namespace)
}
// Don't fail on a bad scrape of one metric
rows, err := db.Query(query)
if err != nil {
log.Infoln("Error running query on database: ", namespace, err)
e.error.Set(1)
return
}
defer rows.Close()
var columnNames []string
columnNames, err = rows.Columns()
if err != nil {
log.Infoln("Error retrieving column list for: ", namespace, err)
e.error.Set(1)
return
}
// Make a lookup map for the column indices
var columnIdx = make(map[string]int, len(columnNames))
for i, n := range columnNames {
columnIdx[n] = i
}
var columnData = make([]interface{}, len(columnNames))
var scanArgs = make([]interface{}, len(columnNames))
for i := range columnData {
scanArgs[i] = &columnData[i]
}
for rows.Next() {
err = rows.Scan(scanArgs...)
if err != nil {
log.Infoln("Error retrieving rows:", namespace, err)
e.error.Set(1)
return
}
// Get the label values for this row
var labels = make([]string, len(mapping.labels))
for idx, columnName := range mapping.labels {
labels[idx], _ = dbToString(columnData[columnIdx[columnName]])
}
// Loop over column names, and match to scan data. Unknown columns
// will be filled with an untyped metric number *if* they can be
// converted to float64s. NULLs are allowed and treated as NaN.
for idx, columnName := range columnNames {
if metricMapping, ok := mapping.columnMappings[columnName]; ok {
// Is this a metricy metric?
if metricMapping.discard {
continue
}
value, ok := dbToFloat64(columnData[idx])
if !ok {
e.error.Set(1)
log.Errorln("Unexpected error parsing column: ", namespace, columnName, columnData[idx])
continue
}
// Generate the metric
ch <- prometheus.MustNewConstMetric(metricMapping.desc, metricMapping.vtype, value, labels...)
} else {
// Unknown metric. Report as untyped if scan to float64 works, else note an error too.
desc := prometheus.NewDesc(fmt.Sprintf("%s_%s", namespace, columnName), fmt.Sprintf("Unknown metric from %s", namespace), nil, nil)
// Its not an error to fail here, since the values are
// unexpected anyway.
value, ok := dbToFloat64(columnData[idx])
if !ok {
log.Warnln("Unparseable column type - discarding: ", namespace, columnName, err)
continue
}
ch <- prometheus.MustNewConstMetric(desc, prometheus.UntypedValue, value, labels...)
}
}
}
}()
err = queryNamespaceMapping(ch, db, namespace, mapping)
if err != nil {
log.Infoln(err)
e.error.Set(1)
}
}
}