osu/osu.Game/Screens/Play/GameplayClockContainer.cs

250 lines
8.9 KiB
C#

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
using System;
using System.Diagnostics.CodeAnalysis;
using System.Linq;
using System.Threading.Tasks;
using osu.Framework;
using osu.Framework.Allocation;
using osu.Framework.Audio;
using osu.Framework.Audio.Track;
using osu.Framework.Bindables;
using osu.Framework.Graphics;
using osu.Framework.Graphics.Containers;
using osu.Framework.Timing;
using osu.Game.Beatmaps;
using osu.Game.Configuration;
namespace osu.Game.Screens.Play
{
/// <summary>
/// Encapsulates gameplay timing logic and provides a <see cref="Play.GameplayClock"/> for children.
/// </summary>
public class GameplayClockContainer : Container
{
private readonly WorkingBeatmap beatmap;
[NotNull]
private ITrack track;
public readonly BindableBool IsPaused = new BindableBool();
/// <summary>
/// The decoupled clock used for gameplay. Should be used for seeks and clock control.
/// </summary>
private readonly DecoupleableInterpolatingFramedClock adjustableClock;
private readonly double gameplayStartTime;
private readonly double firstHitObjectTime;
public readonly BindableNumber<double> UserPlaybackRate = new BindableDouble(1)
{
Default = 1,
MinValue = 0.5,
MaxValue = 2,
Precision = 0.1,
};
/// <summary>
/// The final clock which is exposed to underlying components.
/// </summary>
[Cached]
public readonly GameplayClock GameplayClock;
private Bindable<double> userAudioOffset;
private readonly FramedOffsetClock userOffsetClock;
private readonly FramedOffsetClock platformOffsetClock;
public GameplayClockContainer(WorkingBeatmap beatmap, double gameplayStartTime)
{
this.beatmap = beatmap;
this.gameplayStartTime = gameplayStartTime;
track = beatmap.Track;
firstHitObjectTime = beatmap.Beatmap.HitObjects.First().StartTime;
RelativeSizeAxes = Axes.Both;
adjustableClock = new DecoupleableInterpolatingFramedClock { IsCoupled = false };
// Lazer's audio timings in general doesn't match stable. This is the result of user testing, albeit limited.
// This only seems to be required on windows. We need to eventually figure out why, with a bit of luck.
platformOffsetClock = new HardwareCorrectionOffsetClock(adjustableClock) { Offset = RuntimeInfo.OS == RuntimeInfo.Platform.Windows ? 15 : 0 };
// the final usable gameplay clock with user-set offsets applied.
userOffsetClock = new HardwareCorrectionOffsetClock(platformOffsetClock);
// the clock to be exposed via DI to children.
GameplayClock = new GameplayClock(userOffsetClock);
GameplayClock.IsPaused.BindTo(IsPaused);
}
private double totalOffset => userOffsetClock.Offset + platformOffsetClock.Offset;
/// <summary>
/// Duration before gameplay start time required before skip button displays.
/// </summary>
public const double MINIMUM_SKIP_TIME = 1000;
private readonly BindableDouble pauseFreqAdjust = new BindableDouble(1);
[BackgroundDependencyLoader]
private void load(OsuConfigManager config)
{
userAudioOffset = config.GetBindable<double>(OsuSetting.AudioOffset);
userAudioOffset.BindValueChanged(offset => userOffsetClock.Offset = offset.NewValue, true);
// sane default provided by ruleset.
double startTime = Math.Min(0, gameplayStartTime);
// if a storyboard is present, it may dictate the appropriate start time by having events in negative time space.
// this is commonly used to display an intro before the audio track start.
startTime = Math.Min(startTime, beatmap.Storyboard.FirstEventTime);
// some beatmaps specify a current lead-in time which should be used instead of the ruleset-provided value when available.
// this is not available as an option in the live editor but can still be applied via .osu editing.
if (beatmap.BeatmapInfo.AudioLeadIn > 0)
startTime = Math.Min(startTime, firstHitObjectTime - beatmap.BeatmapInfo.AudioLeadIn);
Seek(startTime);
adjustableClock.ProcessFrame();
}
public void Restart()
{
Task.Run(() =>
{
track.Seek(0);
track.Stop();
Schedule(() =>
{
adjustableClock.ChangeSource(track);
updateRate();
if (!IsPaused.Value)
Start();
});
});
}
public void Start()
{
// Seeking the decoupled clock to its current time ensures that its source clock will be seeked to the same time
// This accounts for the audio clock source potentially taking time to enter a completely stopped state
Seek(GameplayClock.CurrentTime);
adjustableClock.Start();
IsPaused.Value = false;
this.TransformBindableTo(pauseFreqAdjust, 1, 200, Easing.In);
}
/// <summary>
/// Skip forward to the next valid skip point.
/// </summary>
public void Skip()
{
if (GameplayClock.CurrentTime > gameplayStartTime - MINIMUM_SKIP_TIME)
return;
double skipTarget = gameplayStartTime - MINIMUM_SKIP_TIME;
if (GameplayClock.CurrentTime < 0 && skipTarget > 6000)
// double skip exception for storyboards with very long intros
skipTarget = 0;
Seek(skipTarget);
}
/// <summary>
/// Seek to a specific time in gameplay.
/// <remarks>
/// Adjusts for any offsets which have been applied (so the seek may not be the expected point in time on the underlying audio track).
/// </remarks>
/// </summary>
/// <param name="time">The destination time to seek to.</param>
public void Seek(double time)
{
// remove the offset component here because most of the time we want the seek to be aligned to gameplay, not the audio track.
// we may want to consider reversing the application of offsets in the future as it may feel more correct.
adjustableClock.Seek(time - totalOffset);
// manually process frame to ensure GameplayClock is correctly updated after a seek.
userOffsetClock.ProcessFrame();
}
public void Stop()
{
this.TransformBindableTo(pauseFreqAdjust, 0, 200, Easing.Out).OnComplete(_ => adjustableClock.Stop());
IsPaused.Value = true;
}
/// <summary>
/// Changes the backing clock to avoid using the originally provided track.
/// </summary>
public void StopUsingBeatmapClock()
{
removeSourceClockAdjustments();
track = new TrackVirtual(track.Length);
adjustableClock.ChangeSource(track);
}
protected override void Update()
{
if (!IsPaused.Value)
userOffsetClock.ProcessFrame();
base.Update();
}
private bool speedAdjustmentsApplied;
private void updateRate()
{
if (speedAdjustmentsApplied)
return;
track.AddAdjustment(AdjustableProperty.Frequency, pauseFreqAdjust);
track.AddAdjustment(AdjustableProperty.Tempo, UserPlaybackRate);
speedAdjustmentsApplied = true;
}
protected override void Dispose(bool isDisposing)
{
base.Dispose(isDisposing);
removeSourceClockAdjustments();
}
private void removeSourceClockAdjustments()
{
if (!speedAdjustmentsApplied) return;
track.RemoveAdjustment(AdjustableProperty.Frequency, pauseFreqAdjust);
track.RemoveAdjustment(AdjustableProperty.Tempo, UserPlaybackRate);
speedAdjustmentsApplied = false;
}
private class HardwareCorrectionOffsetClock : FramedOffsetClock
{
// we always want to apply the same real-time offset, so it should be adjusted by the difference in playback rate (from realtime) to achieve this.
// base implementation already adds offset at 1.0 rate, so we only add the difference from that here.
public override double CurrentTime => base.CurrentTime + Offset * (Rate - 1);
public HardwareCorrectionOffsetClock(IClock source, bool processSource = true)
: base(source, processSource)
{
}
}
}
}