osu/osu.Game.Rulesets.Osu/Difficulty/Preprocessing/OsuDifficultyHitObject.cs

217 lines
11 KiB
C#

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
using System;
using osu.Game.Rulesets.Difficulty.Preprocessing;
using osu.Game.Rulesets.Objects;
using osu.Game.Rulesets.Osu.Objects;
using osuTK;
namespace osu.Game.Rulesets.Osu.Difficulty.Preprocessing
{
public class OsuDifficultyHitObject : DifficultyHitObject
{
private const int normalized_radius = 50; // Change radius to 50 to make 100 the diameter. Easier for mental maths.
private const int min_delta_time = 25;
private const float maximum_slider_radius = normalized_radius * 2.4f;
private const float assumed_slider_radius = normalized_radius * 1.8f;
protected new OsuHitObject BaseObject => (OsuHitObject)base.BaseObject;
/// <summary>
/// Normalized distance from the end position of the previous <see cref="OsuDifficultyHitObject"/> to the start position of this <see cref="OsuDifficultyHitObject"/>.
/// </summary>
public double JumpDistance { get; private set; }
/// <summary>
/// Minimum distance from the end position of the previous <see cref="OsuDifficultyHitObject"/> to the start position of this <see cref="OsuDifficultyHitObject"/>.
/// </summary>
public double MovementDistance { get; private set; }
/// <summary>
/// Normalized distance between the start and end position of the previous <see cref="OsuDifficultyHitObject"/>.
/// </summary>
public double TravelDistance { get; private set; }
/// <summary>
/// Angle the player has to take to hit this <see cref="OsuDifficultyHitObject"/>.
/// Calculated as the angle between the circles (current-2, current-1, current).
/// </summary>
public double? Angle { get; private set; }
/// <summary>
/// Milliseconds elapsed since the end time of the previous <see cref="OsuDifficultyHitObject"/>, with a minimum of 25ms.
/// </summary>
public double MovementTime { get; private set; }
/// <summary>
/// Milliseconds elapsed since the start time of the previous <see cref="OsuDifficultyHitObject"/> to the end time of the same previous <see cref="OsuDifficultyHitObject"/>, with a minimum of 25ms.
/// </summary>
public double TravelTime { get; private set; }
/// <summary>
/// Milliseconds elapsed since the start time of the previous <see cref="OsuDifficultyHitObject"/>, with a minimum of 25ms.
/// </summary>
public readonly double StrainTime;
private readonly OsuHitObject lastLastObject;
private readonly OsuHitObject lastObject;
public OsuDifficultyHitObject(HitObject hitObject, HitObject lastLastObject, HitObject lastObject, double clockRate)
: base(hitObject, lastObject, clockRate)
{
this.lastLastObject = (OsuHitObject)lastLastObject;
this.lastObject = (OsuHitObject)lastObject;
// Capped to 25ms to prevent difficulty calculation breaking from simultaneous objects.
StrainTime = Math.Max(DeltaTime, min_delta_time);
setDistances(clockRate);
}
public double Opacity(double mapTime, bool hidden)
{
double ms = BaseObject.StartTime - mapTime;
if (ms < 0)
return 0.0;
double preemptTime = BaseObject.TimePreempt;
double fadeInTime = BaseObject.TimeFadeIn;
if (hidden)
return Math.Clamp(Math.Min((1.0 - ms / preemptTime) * 2.5, (ms / preemptTime - 0.3) * (1.0 / 0.3)), 0.0, 1.0);
else
return Math.Clamp((preemptTime - ms) / fadeInTime, 0.0, 1.0);
}
private void setDistances(double clockRate)
{
// We don't need to calculate either angle or distance when one of the last->curr objects is a spinner
if (BaseObject is Spinner || lastObject is Spinner)
return;
// We will scale distances by this factor, so we can assume a uniform CircleSize among beatmaps.
float scalingFactor = normalized_radius / (float)BaseObject.Radius;
if (BaseObject.Radius < 30)
{
float smallCircleBonus = Math.Min(30 - (float)BaseObject.Radius, 5) / 50;
scalingFactor *= 1 + smallCircleBonus;
}
Vector2 lastCursorPosition = getEndCursorPosition(lastObject);
JumpDistance = (BaseObject.StackedPosition * scalingFactor - lastCursorPosition * scalingFactor).Length;
if (lastObject is Slider lastSlider)
{
computeSliderCursorPosition(lastSlider);
TravelDistance = lastSlider.LazyTravelDistance;
TravelTime = Math.Max(lastSlider.LazyTravelTime / clockRate, min_delta_time);
MovementTime = Math.Max(StrainTime - TravelTime, min_delta_time);
// Jump distance from the slider tail to the next object, as opposed to the lazy position of JumpDistance.
float tailJumpDistance = Vector2.Subtract(lastSlider.TailCircle.StackedPosition, BaseObject.StackedPosition).Length * scalingFactor;
// For hitobjects which continue in the direction of the slider, the player will normally follow through the slider,
// such that they're not jumping from the lazy position but rather from very close to (or the end of) the slider.
// In such cases, a leniency is applied by also considering the jump distance from the tail of the slider, and taking the minimum jump distance.
// Additional distance is removed based on position of jump relative to slider follow circle radius.
// JumpDistance is the leniency distance beyond the assumed_slider_radius. tailJumpDistance is maximum_slider_radius since the full distance of radial leniency is still possible.
MovementDistance = Math.Max(0, Math.Min(JumpDistance - (maximum_slider_radius - assumed_slider_radius), tailJumpDistance - maximum_slider_radius));
}
else
{
MovementTime = StrainTime;
MovementDistance = JumpDistance;
}
if (lastLastObject != null && !(lastLastObject is Spinner))
{
Vector2 lastLastCursorPosition = getEndCursorPosition(lastLastObject);
Vector2 v1 = lastLastCursorPosition - lastObject.StackedPosition;
Vector2 v2 = BaseObject.StackedPosition - lastCursorPosition;
float dot = Vector2.Dot(v1, v2);
float det = v1.X * v2.Y - v1.Y * v2.X;
Angle = Math.Abs(Math.Atan2(det, dot));
}
}
private void computeSliderCursorPosition(Slider slider)
{
if (slider.LazyEndPosition != null)
return;
slider.LazyTravelTime = slider.NestedHitObjects[^1].StartTime - slider.StartTime;
double endTimeMin = slider.LazyTravelTime / slider.SpanDuration;
if (endTimeMin % 2 >= 1)
endTimeMin = 1 - endTimeMin % 1;
else
endTimeMin %= 1;
slider.LazyEndPosition = slider.StackedPosition + slider.Path.PositionAt(endTimeMin); // temporary lazy end position until a real result can be derived.
var currCursorPosition = slider.StackedPosition;
double scalingFactor = normalized_radius / slider.Radius; // lazySliderDistance is coded to be sensitive to scaling, this makes the maths easier with the thresholds being used.
for (int i = 1; i < slider.NestedHitObjects.Count; i++)
{
var currMovementObj = (OsuHitObject)slider.NestedHitObjects[i];
Vector2 currMovement = Vector2.Subtract(currMovementObj.StackedPosition, currCursorPosition);
double currMovementLength = scalingFactor * currMovement.Length;
// Amount of movement required so that the cursor position needs to be updated.
double requiredMovement = assumed_slider_radius;
if (i == slider.NestedHitObjects.Count - 1)
{
// The end of a slider has special aim rules due to the relaxed time constraint on position.
// There is both a lazy end position as well as the actual end slider position. We assume the player takes the simpler movement.
// For sliders that are circular, the lazy end position may actually be farther away than the sliders true end.
// This code is designed to prevent buffing situations where lazy end is actually a less efficient movement.
Vector2 lazyMovement = Vector2.Subtract((Vector2)slider.LazyEndPosition, currCursorPosition);
if (lazyMovement.Length < currMovement.Length)
currMovement = lazyMovement;
currMovementLength = scalingFactor * currMovement.Length;
}
else if (currMovementObj is SliderRepeat)
{
// For a slider repeat, assume a tighter movement threshold to better assess repeat sliders.
requiredMovement = normalized_radius;
}
if (currMovementLength > requiredMovement)
{
// this finds the positional delta from the required radius and the current position, and updates the currCursorPosition accordingly, as well as rewarding distance.
currCursorPosition = Vector2.Add(currCursorPosition, Vector2.Multiply(currMovement, (float)((currMovementLength - requiredMovement) / currMovementLength)));
currMovementLength *= (currMovementLength - requiredMovement) / currMovementLength;
slider.LazyTravelDistance += (float)currMovementLength;
}
if (i == slider.NestedHitObjects.Count - 1)
slider.LazyEndPosition = currCursorPosition;
}
slider.LazyTravelDistance *= (float)Math.Pow(1 + slider.RepeatCount / 2.5, 1.0 / 2.5); // Bonus for repeat sliders until a better per nested object strain system can be achieved.
}
private Vector2 getEndCursorPosition(OsuHitObject hitObject)
{
Vector2 pos = hitObject.StackedPosition;
if (hitObject is Slider slider)
{
computeSliderCursorPosition(slider);
pos = slider.LazyEndPosition ?? pos;
}
return pos;
}
}
}