mirror of
https://github.com/ppy/osu
synced 2024-12-25 16:22:23 +00:00
688 lines
36 KiB
C#
688 lines
36 KiB
C#
// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
|
|
// See the LICENCE file in the repository root for full licence text.
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Diagnostics;
|
|
using System.Linq;
|
|
using osu.Framework.Logging;
|
|
using osu.Game.Beatmaps;
|
|
using osu.Game.Extensions;
|
|
using osu.Game.IO.Legacy;
|
|
using osu.Game.Rulesets;
|
|
using osu.Game.Rulesets.Judgements;
|
|
using osu.Game.Rulesets.Mods;
|
|
using osu.Game.Rulesets.Objects;
|
|
using osu.Game.Rulesets.Scoring;
|
|
using osu.Game.Rulesets.Scoring.Legacy;
|
|
using osu.Game.Scoring;
|
|
|
|
namespace osu.Game.Database
|
|
{
|
|
public static class StandardisedScoreMigrationTools
|
|
{
|
|
public static bool ShouldMigrateToNewStandardised(ScoreInfo score)
|
|
{
|
|
if (score.IsLegacyScore)
|
|
return false;
|
|
|
|
if (score.TotalScoreVersion > 30000002)
|
|
return false;
|
|
|
|
// Recalculate the old-style standardised score to see if this was an old lazer score.
|
|
bool oldScoreMatchesExpectations = GetOldStandardised(score) == score.TotalScore;
|
|
// Some older scores don't have correct statistics populated, so let's give them benefit of doubt.
|
|
bool scoreIsVeryOld = score.Date < new DateTime(2023, 1, 1, 0, 0, 0);
|
|
|
|
return oldScoreMatchesExpectations || scoreIsVeryOld;
|
|
}
|
|
|
|
public static long GetNewStandardised(ScoreInfo score)
|
|
{
|
|
int maxJudgementIndex = 0;
|
|
|
|
// Avoid retrieving from realm inside loops.
|
|
int maxCombo = score.MaxCombo;
|
|
|
|
var ruleset = score.Ruleset.CreateInstance();
|
|
var processor = ruleset.CreateScoreProcessor();
|
|
|
|
processor.TrackHitEvents = false;
|
|
|
|
var beatmap = new Beatmap();
|
|
|
|
HitResult maxRulesetJudgement = ruleset.GetHitResults().First().result;
|
|
|
|
// This is a list of all results, ordered from best to worst.
|
|
// We are constructing a "best possible" score from the statistics provided because it's the best we can do.
|
|
List<HitResult> sortedHits = score.Statistics
|
|
.Where(kvp => kvp.Key.AffectsCombo())
|
|
.OrderByDescending(kvp => processor.GetBaseScoreForResult(kvp.Key))
|
|
.SelectMany(kvp => Enumerable.Repeat(kvp.Key, kvp.Value))
|
|
.ToList();
|
|
|
|
// Attempt to use maximum statistics from the database.
|
|
var maximumJudgements = score.MaximumStatistics
|
|
.Where(kvp => kvp.Key.AffectsCombo())
|
|
.OrderByDescending(kvp => processor.GetBaseScoreForResult(kvp.Key))
|
|
.SelectMany(kvp => Enumerable.Repeat(new FakeJudgement(kvp.Key), kvp.Value))
|
|
.ToList();
|
|
|
|
// Some older scores may not have maximum statistics populated correctly.
|
|
// In this case we need to fill them with best-known-defaults.
|
|
if (maximumJudgements.Count != sortedHits.Count)
|
|
{
|
|
maximumJudgements = sortedHits
|
|
.Select(r => new FakeJudgement(getMaxJudgementFor(r, maxRulesetJudgement)))
|
|
.ToList();
|
|
}
|
|
|
|
// This is required to get the correct maximum combo portion.
|
|
foreach (var judgement in maximumJudgements)
|
|
beatmap.HitObjects.Add(new FakeHit(judgement));
|
|
processor.ApplyBeatmap(beatmap);
|
|
processor.Mods.Value = score.Mods;
|
|
|
|
// Insert all misses into a queue.
|
|
// These will be nibbled at whenever we need to reset the combo.
|
|
Queue<HitResult> misses = new Queue<HitResult>(score.Statistics
|
|
.Where(kvp => kvp.Key == HitResult.Miss || kvp.Key == HitResult.LargeTickMiss)
|
|
.SelectMany(kvp => Enumerable.Repeat(kvp.Key, kvp.Value)));
|
|
|
|
foreach (var result in sortedHits)
|
|
{
|
|
// For the main part of this loop, ignore all misses, as they will be inserted from the queue.
|
|
if (result == HitResult.Miss || result == HitResult.LargeTickMiss)
|
|
continue;
|
|
|
|
// Reset combo if required.
|
|
if (processor.Combo.Value == maxCombo)
|
|
insertMiss();
|
|
|
|
processor.ApplyResult(new JudgementResult(null!, maximumJudgements[maxJudgementIndex++])
|
|
{
|
|
Type = result
|
|
});
|
|
}
|
|
|
|
// Ensure we haven't forgotten any misses.
|
|
while (misses.Count > 0)
|
|
insertMiss();
|
|
|
|
var bonusHits = score.Statistics
|
|
.Where(kvp => kvp.Key.IsBonus())
|
|
.SelectMany(kvp => Enumerable.Repeat(kvp.Key, kvp.Value));
|
|
|
|
foreach (var result in bonusHits)
|
|
processor.ApplyResult(new JudgementResult(null!, new FakeJudgement(result)) { Type = result });
|
|
|
|
// Not true for all scores for whatever reason. Oh well.
|
|
// Debug.Assert(processor.HighestCombo.Value == score.MaxCombo);
|
|
|
|
return processor.TotalScore.Value;
|
|
|
|
void insertMiss()
|
|
{
|
|
if (misses.Count > 0)
|
|
{
|
|
processor.ApplyResult(new JudgementResult(null!, maximumJudgements[maxJudgementIndex++])
|
|
{
|
|
Type = misses.Dequeue(),
|
|
});
|
|
}
|
|
else
|
|
{
|
|
// We ran out of misses. But we can't let max combo increase beyond the known value,
|
|
// so let's forge a miss.
|
|
processor.ApplyResult(new JudgementResult(null!, new FakeJudgement(getMaxJudgementFor(HitResult.Miss, maxRulesetJudgement)))
|
|
{
|
|
Type = HitResult.Miss,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
private static HitResult getMaxJudgementFor(HitResult hitResult, HitResult max)
|
|
{
|
|
switch (hitResult)
|
|
{
|
|
case HitResult.Miss:
|
|
case HitResult.Meh:
|
|
case HitResult.Ok:
|
|
case HitResult.Good:
|
|
case HitResult.Great:
|
|
case HitResult.Perfect:
|
|
return max;
|
|
|
|
case HitResult.SmallTickMiss:
|
|
case HitResult.SmallTickHit:
|
|
return HitResult.SmallTickHit;
|
|
|
|
case HitResult.LargeTickMiss:
|
|
case HitResult.LargeTickHit:
|
|
return HitResult.LargeTickHit;
|
|
}
|
|
|
|
return HitResult.IgnoreHit;
|
|
}
|
|
|
|
public static long GetOldStandardised(ScoreInfo score)
|
|
{
|
|
double accuracyScore =
|
|
(double)score.Statistics.Where(kvp => kvp.Key.AffectsAccuracy()).Sum(kvp => numericScoreFor(kvp.Key) * kvp.Value)
|
|
/ score.MaximumStatistics.Where(kvp => kvp.Key.AffectsAccuracy()).Sum(kvp => numericScoreFor(kvp.Key) * kvp.Value);
|
|
double comboScore = (double)score.MaxCombo / score.MaximumStatistics.Where(kvp => kvp.Key.AffectsCombo()).Sum(kvp => kvp.Value);
|
|
double bonusScore = score.Statistics.Where(kvp => kvp.Key.IsBonus()).Sum(kvp => numericScoreFor(kvp.Key) * kvp.Value);
|
|
|
|
double accuracyPortion = 0.3;
|
|
|
|
switch (score.RulesetID)
|
|
{
|
|
case 1:
|
|
accuracyPortion = 0.75;
|
|
break;
|
|
|
|
case 3:
|
|
accuracyPortion = 0.99;
|
|
break;
|
|
}
|
|
|
|
double modMultiplier = 1;
|
|
|
|
foreach (var mod in score.Mods)
|
|
modMultiplier *= mod.ScoreMultiplier;
|
|
|
|
return (long)Math.Round((1000000 * (accuracyPortion * accuracyScore + (1 - accuracyPortion) * comboScore) + bonusScore) * modMultiplier);
|
|
|
|
static int numericScoreFor(HitResult result)
|
|
{
|
|
switch (result)
|
|
{
|
|
default:
|
|
return 0;
|
|
|
|
case HitResult.SmallTickHit:
|
|
return 10;
|
|
|
|
case HitResult.LargeTickHit:
|
|
return 30;
|
|
|
|
case HitResult.Meh:
|
|
return 50;
|
|
|
|
case HitResult.Ok:
|
|
return 100;
|
|
|
|
case HitResult.Good:
|
|
return 200;
|
|
|
|
case HitResult.Great:
|
|
return 300;
|
|
|
|
case HitResult.Perfect:
|
|
return 315;
|
|
|
|
case HitResult.SmallBonus:
|
|
return 10;
|
|
|
|
case HitResult.LargeBonus:
|
|
return 50;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Updates a <see cref="ScoreInfo"/> to standardised scoring.
|
|
/// This will recompite the score's <see cref="ScoreInfo.Accuracy"/> (always), <see cref="ScoreInfo.Rank"/> (always),
|
|
/// and <see cref="ScoreInfo.TotalScore"/> (if the score comes from stable).
|
|
/// The total score from stable - if any applicable - will be stored to <see cref="ScoreInfo.LegacyTotalScore"/>.
|
|
/// </summary>
|
|
/// <param name="score">The score to update.</param>
|
|
/// <param name="beatmap">The <see cref="WorkingBeatmap"/> applicable for this score.</param>
|
|
public static void UpdateFromLegacy(ScoreInfo score, WorkingBeatmap beatmap)
|
|
{
|
|
var ruleset = score.Ruleset.CreateInstance();
|
|
var scoreProcessor = ruleset.CreateScoreProcessor();
|
|
|
|
// warning: ordering is important here - both total score and ranks are dependent on accuracy!
|
|
score.Accuracy = computeAccuracy(score, scoreProcessor);
|
|
score.Rank = computeRank(score, scoreProcessor);
|
|
score.TotalScore = convertFromLegacyTotalScore(score, ruleset, beatmap);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Updates a <see cref="ScoreInfo"/> to standardised scoring.
|
|
/// This will recompute the score's <see cref="ScoreInfo.Accuracy"/> (always), <see cref="ScoreInfo.Rank"/> (always),
|
|
/// and <see cref="ScoreInfo.TotalScore"/> (if the score comes from stable).
|
|
/// The total score from stable - if any applicable - will be stored to <see cref="ScoreInfo.LegacyTotalScore"/>.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// This overload is intended for server-side flows.
|
|
/// See: https://github.com/ppy/osu-queue-score-statistics/blob/3681e92ac91c6c61922094bdbc7e92e6217dd0fc/osu.Server.Queues.ScoreStatisticsProcessor/Commands/Queue/BatchInserter.cs
|
|
/// </remarks>
|
|
/// <param name="score">The score to update.</param>
|
|
/// <param name="ruleset">The <see cref="Ruleset"/> in which the score was set.</param>
|
|
/// <param name="difficulty">The beatmap difficulty.</param>
|
|
/// <param name="attributes">The legacy scoring attributes for the beatmap which the score was set on.</param>
|
|
public static void UpdateFromLegacy(ScoreInfo score, Ruleset ruleset, LegacyBeatmapConversionDifficultyInfo difficulty, LegacyScoreAttributes attributes)
|
|
{
|
|
var scoreProcessor = ruleset.CreateScoreProcessor();
|
|
|
|
// warning: ordering is important here - both total score and ranks are dependent on accuracy!
|
|
score.Accuracy = computeAccuracy(score, scoreProcessor);
|
|
score.Rank = computeRank(score, scoreProcessor);
|
|
score.TotalScore = convertFromLegacyTotalScore(score, ruleset, difficulty, attributes);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts from <see cref="ScoreInfo.LegacyTotalScore"/> to the new standardised scoring of <see cref="ScoreProcessor"/>.
|
|
/// </summary>
|
|
/// <param name="score">The score to convert the total score of.</param>
|
|
/// <param name="ruleset">The <see cref="Ruleset"/> in which the score was set.</param>
|
|
/// <param name="beatmap">The <see cref="WorkingBeatmap"/> applicable for this score.</param>
|
|
/// <returns>The standardised total score.</returns>
|
|
private static long convertFromLegacyTotalScore(ScoreInfo score, Ruleset ruleset, WorkingBeatmap beatmap)
|
|
{
|
|
if (!score.IsLegacyScore)
|
|
return score.TotalScore;
|
|
|
|
if (ruleset is not ILegacyRuleset legacyRuleset)
|
|
return score.TotalScore;
|
|
|
|
var mods = score.Mods;
|
|
if (mods.Any(mod => mod is ModScoreV2))
|
|
return score.TotalScore;
|
|
|
|
var playableBeatmap = beatmap.GetPlayableBeatmap(ruleset.RulesetInfo, score.Mods);
|
|
|
|
if (playableBeatmap.HitObjects.Count == 0)
|
|
throw new InvalidOperationException("Beatmap contains no hit objects!");
|
|
|
|
ILegacyScoreSimulator sv1Simulator = legacyRuleset.CreateLegacyScoreSimulator();
|
|
LegacyScoreAttributes attributes = sv1Simulator.Simulate(beatmap, playableBeatmap);
|
|
|
|
return convertFromLegacyTotalScore(score, ruleset, LegacyBeatmapConversionDifficultyInfo.FromBeatmap(beatmap.Beatmap), attributes);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts from <see cref="ScoreInfo.LegacyTotalScore"/> to the new standardised scoring of <see cref="ScoreProcessor"/>.
|
|
/// </summary>
|
|
/// <param name="score">The score to convert the total score of.</param>
|
|
/// <param name="ruleset">The <see cref="Ruleset"/> in which the score was set.</param>
|
|
/// <param name="difficulty">The beatmap difficulty.</param>
|
|
/// <param name="attributes">The legacy scoring attributes for the beatmap which the score was set on.</param>
|
|
/// <returns>The standardised total score.</returns>
|
|
private static long convertFromLegacyTotalScore(ScoreInfo score, Ruleset ruleset, LegacyBeatmapConversionDifficultyInfo difficulty, LegacyScoreAttributes attributes)
|
|
{
|
|
if (!score.IsLegacyScore)
|
|
return score.TotalScore;
|
|
|
|
Debug.Assert(score.LegacyTotalScore != null);
|
|
|
|
if (ruleset is not ILegacyRuleset legacyRuleset)
|
|
return score.TotalScore;
|
|
|
|
double legacyModMultiplier = legacyRuleset.CreateLegacyScoreSimulator().GetLegacyScoreMultiplier(score.Mods, difficulty);
|
|
int maximumLegacyAccuracyScore = attributes.AccuracyScore;
|
|
long maximumLegacyComboScore = (long)Math.Round(attributes.ComboScore * legacyModMultiplier);
|
|
double maximumLegacyBonusRatio = attributes.BonusScoreRatio;
|
|
long maximumLegacyBonusScore = attributes.BonusScore;
|
|
|
|
double legacyAccScore = maximumLegacyAccuracyScore * score.Accuracy;
|
|
|
|
double comboProportion;
|
|
|
|
if (maximumLegacyComboScore + maximumLegacyBonusScore > 0)
|
|
{
|
|
// We can not separate the ComboScore from the BonusScore, so we keep the bonus in the ratio.
|
|
comboProportion = Math.Max((double)score.LegacyTotalScore - legacyAccScore, 0) / (maximumLegacyComboScore + maximumLegacyBonusScore);
|
|
}
|
|
else
|
|
{
|
|
// Two possible causes:
|
|
// the beatmap has no bonus objects *AND*
|
|
// either the active mods have a zero mod multiplier, in which case assume 0,
|
|
// or the *beatmap* has a zero `difficultyPeppyStars` (or just no combo-giving objects), in which case assume 1.
|
|
comboProportion = legacyModMultiplier == 0 ? 0 : 1;
|
|
}
|
|
|
|
// We assume the bonus proportion only makes up the rest of the score that exceeds maximumLegacyBaseScore.
|
|
long maximumLegacyBaseScore = maximumLegacyAccuracyScore + maximumLegacyComboScore;
|
|
double bonusProportion = Math.Max(0, ((long)score.LegacyTotalScore - maximumLegacyBaseScore) * maximumLegacyBonusRatio);
|
|
|
|
double modMultiplier = score.Mods.Select(m => m.ScoreMultiplier).Aggregate(1.0, (c, n) => c * n);
|
|
|
|
long convertedTotalScore;
|
|
|
|
switch (score.Ruleset.OnlineID)
|
|
{
|
|
case 0:
|
|
if (score.MaxCombo == 0 || score.Accuracy == 0)
|
|
{
|
|
return (long)Math.Round((
|
|
0
|
|
+ 500000 * Math.Pow(score.Accuracy, 5)
|
|
+ bonusProportion) * modMultiplier);
|
|
}
|
|
|
|
// see similar check above.
|
|
// if there is no legacy combo score, all combo conversion operations below
|
|
// are either pointless or wildly wrong.
|
|
if (maximumLegacyComboScore + maximumLegacyBonusScore == 0)
|
|
{
|
|
return (long)Math.Round((
|
|
500000 * comboProportion // as above, zero if mods result in zero multiplier, one otherwise
|
|
+ 500000 * Math.Pow(score.Accuracy, 5)
|
|
+ bonusProportion) * modMultiplier);
|
|
}
|
|
|
|
// Assumptions:
|
|
// - sliders and slider ticks are uniformly distributed in the beatmap, and thus can be ignored without losing much precision.
|
|
// We thus consider a map of hit-circles only, which gives objectCount == maximumCombo.
|
|
// - the Ok/Meh hit results are uniformly spread in the score, and thus can be ignored without losing much precision.
|
|
// We simplify and consider each hit result to have the same hit value of `300 * score.Accuracy`
|
|
// (which represents the average hit value over the entire play),
|
|
// which allows us to isolate the accuracy multiplier.
|
|
|
|
// This is a very ballpark estimate of the maximum magnitude of the combo portion in score V1.
|
|
// It is derived by assuming a full combo play and summing up the contribution to combo portion from each individual object.
|
|
// Because each object's combo contribution is proportional to the current combo at the time of judgement,
|
|
// this can be roughly represented by summing / integrating f(combo) = combo.
|
|
// All mod- and beatmap-dependent multipliers and constants are not included here,
|
|
// as we will only be using the magnitude of this to compute ratios.
|
|
int maximumLegacyCombo = attributes.MaxCombo;
|
|
double maximumAchievableComboPortionInScoreV1 = Math.Pow(maximumLegacyCombo, 2);
|
|
// Similarly, estimate the maximum magnitude of the combo portion in standardised score.
|
|
// Roughly corresponds to integrating f(combo) = combo ^ COMBO_EXPONENT (omitting constants)
|
|
double maximumAchievableComboPortionInStandardisedScore = Math.Pow(maximumLegacyCombo, 1 + ScoreProcessor.COMBO_EXPONENT);
|
|
|
|
// This is - roughly - how much score, in the combo portion, the longest combo on this particular play would gain in score V1.
|
|
double comboPortionFromLongestComboInScoreV1 = Math.Pow(score.MaxCombo, 2);
|
|
// Same for standardised score.
|
|
double comboPortionFromLongestComboInStandardisedScore = Math.Pow(score.MaxCombo, 1 + ScoreProcessor.COMBO_EXPONENT);
|
|
|
|
// We estimate the combo portion of the score in score V1 terms.
|
|
// The division by accuracy is supposed to lessen the impact of accuracy on the combo portion,
|
|
// but in some edge cases it cannot sanely undo it.
|
|
// Therefore the resultant value is clamped from both sides for sanity.
|
|
// The clamp from below to `comboPortionFromLongestComboInScoreV1` targets near-FC scores wherein
|
|
// the player had bad accuracy at the end of their longest combo, which causes the division by accuracy
|
|
// to underestimate the combo portion.
|
|
// Ideally, this would be clamped from above to `maximumAchievableComboPortionInScoreV1` too,
|
|
// but in practice this appears to fail for some scores (https://github.com/ppy/osu/pull/25876#issuecomment-1862248413).
|
|
// TODO: investigate the above more closely
|
|
double comboPortionInScoreV1 = Math.Max(maximumAchievableComboPortionInScoreV1 * comboProportion / score.Accuracy, comboPortionFromLongestComboInScoreV1);
|
|
|
|
// Calculate how many times the longest combo the user has achieved in the play can repeat
|
|
// without exceeding the combo portion in score V1 as achieved by the player.
|
|
// This is a pessimistic estimate; it intentionally does not operate on object count and uses only score instead.
|
|
double maximumOccurrencesOfLongestCombo = Math.Floor(comboPortionInScoreV1 / comboPortionFromLongestComboInScoreV1);
|
|
double comboPortionFromRepeatedLongestCombosInScoreV1 = maximumOccurrencesOfLongestCombo * comboPortionFromLongestComboInScoreV1;
|
|
|
|
double remainingComboPortionInScoreV1 = comboPortionInScoreV1 - comboPortionFromRepeatedLongestCombosInScoreV1;
|
|
// `remainingComboPortionInScoreV1` is in the "score ballpark" realm, which means it's proportional to combo squared.
|
|
// To convert that back to a raw combo length, we need to take the square root...
|
|
double remainingCombo = Math.Sqrt(remainingComboPortionInScoreV1);
|
|
// ...and then based on that raw combo length, we calculate how much this last combo is worth in standardised score.
|
|
double remainingComboPortionInStandardisedScore = Math.Pow(remainingCombo, 1 + ScoreProcessor.COMBO_EXPONENT);
|
|
|
|
double lowerEstimateOfComboPortionInStandardisedScore
|
|
= maximumOccurrencesOfLongestCombo * comboPortionFromLongestComboInStandardisedScore
|
|
+ remainingComboPortionInStandardisedScore;
|
|
|
|
// Compute approximate upper estimate new score for that play.
|
|
// This time, divide the remaining combo among remaining objects equally to achieve longest possible combo lengths.
|
|
// There is no rigorous proof that doing this will yield a correct upper bound, but it seems to work out in practice.
|
|
remainingComboPortionInScoreV1 = comboPortionInScoreV1 - comboPortionFromLongestComboInScoreV1;
|
|
double remainingCountOfObjectsGivingCombo = maximumLegacyCombo - score.MaxCombo - score.Statistics.GetValueOrDefault(HitResult.Miss);
|
|
// Because we assumed all combos were equal, `remainingComboPortionInScoreV1`
|
|
// can be approximated by n * x^2, wherein n is the assumed number of equal combos,
|
|
// and x is the assumed length of every one of those combos.
|
|
// The remaining count of objects giving combo is, using those terms, equal to n * x.
|
|
// Therefore, dividing the two will result in x, i.e. the assumed length of the remaining combos.
|
|
double lengthOfRemainingCombos = remainingCountOfObjectsGivingCombo > 0
|
|
? remainingComboPortionInScoreV1 / remainingCountOfObjectsGivingCombo
|
|
: 0;
|
|
// In standardised scoring, each combo yields a score proportional to combo length to the power 1 + COMBO_EXPONENT.
|
|
// Using the symbols introduced above, that would be x ^ 1.5 per combo, n times (because there are n assumed equal-length combos).
|
|
// However, because `remainingCountOfObjectsGivingCombo` - using the symbols introduced above - is assumed to be equal to n * x,
|
|
// we can skip adding the 1 and just multiply by x ^ 0.5.
|
|
remainingComboPortionInStandardisedScore = remainingCountOfObjectsGivingCombo * Math.Pow(lengthOfRemainingCombos, ScoreProcessor.COMBO_EXPONENT);
|
|
|
|
double upperEstimateOfComboPortionInStandardisedScore = comboPortionFromLongestComboInStandardisedScore + remainingComboPortionInStandardisedScore;
|
|
|
|
// Approximate by combining lower and upper estimates.
|
|
// As the lower-estimate is very pessimistic, we use a 30/70 ratio
|
|
// and cap it with 1.2 times the middle-point to avoid overestimates.
|
|
double estimatedComboPortionInStandardisedScore = Math.Min(
|
|
0.3 * lowerEstimateOfComboPortionInStandardisedScore + 0.7 * upperEstimateOfComboPortionInStandardisedScore,
|
|
1.2 * (lowerEstimateOfComboPortionInStandardisedScore + upperEstimateOfComboPortionInStandardisedScore) / 2
|
|
);
|
|
|
|
double newComboScoreProportion = estimatedComboPortionInStandardisedScore / maximumAchievableComboPortionInStandardisedScore;
|
|
|
|
convertedTotalScore = (long)Math.Round((
|
|
500000 * newComboScoreProportion * score.Accuracy
|
|
+ 500000 * Math.Pow(score.Accuracy, 5)
|
|
+ bonusProportion) * modMultiplier);
|
|
break;
|
|
|
|
case 1:
|
|
convertedTotalScore = (long)Math.Round((
|
|
250000 * comboProportion
|
|
+ 750000 * Math.Pow(score.Accuracy, 3.6)
|
|
+ bonusProportion) * modMultiplier);
|
|
break;
|
|
|
|
case 2:
|
|
// compare logic in `CatchScoreProcessor`.
|
|
|
|
// this could technically be slightly incorrect in the case of stable scores.
|
|
// because large droplet misses are counted as full misses in stable scores,
|
|
// `score.MaximumStatistics.GetValueOrDefault(Great)` will be equal to the count of fruits *and* large droplets
|
|
// rather than just fruits (which was the intent).
|
|
// this is not fixable without introducing an extra legacy score attribute dedicated for catch,
|
|
// and this is a ballpark conversion process anyway, so attempt to trudge on.
|
|
int fruitTinyScaleDivisor = score.MaximumStatistics.GetValueOrDefault(HitResult.SmallTickHit) + score.MaximumStatistics.GetValueOrDefault(HitResult.Great);
|
|
double fruitTinyScale = fruitTinyScaleDivisor == 0
|
|
? 0
|
|
: (double)score.MaximumStatistics.GetValueOrDefault(HitResult.SmallTickHit) / fruitTinyScaleDivisor;
|
|
|
|
const int max_tiny_droplets_portion = 400000;
|
|
|
|
double comboPortion = 1000000 - max_tiny_droplets_portion + max_tiny_droplets_portion * (1 - fruitTinyScale);
|
|
double dropletsPortion = max_tiny_droplets_portion * fruitTinyScale;
|
|
double dropletsHit = score.MaximumStatistics.GetValueOrDefault(HitResult.SmallTickHit) == 0
|
|
? 0
|
|
: (double)score.Statistics.GetValueOrDefault(HitResult.SmallTickHit) / score.MaximumStatistics.GetValueOrDefault(HitResult.SmallTickHit);
|
|
|
|
convertedTotalScore = (long)Math.Round((
|
|
comboPortion * estimateComboProportionForCatch(attributes.MaxCombo, score.MaxCombo, score.Statistics.GetValueOrDefault(HitResult.Miss))
|
|
+ dropletsPortion * dropletsHit
|
|
+ bonusProportion) * modMultiplier);
|
|
break;
|
|
|
|
case 3:
|
|
convertedTotalScore = (long)Math.Round((
|
|
850000 * comboProportion
|
|
+ 150000 * Math.Pow(score.Accuracy, 2 + 2 * score.Accuracy)
|
|
+ bonusProportion) * modMultiplier);
|
|
break;
|
|
|
|
default:
|
|
convertedTotalScore = score.TotalScore;
|
|
break;
|
|
}
|
|
|
|
if (convertedTotalScore < 0)
|
|
throw new InvalidOperationException($"Total score conversion operation returned invalid total of {convertedTotalScore}");
|
|
|
|
return convertedTotalScore;
|
|
}
|
|
|
|
/// <summary>
|
|
/// <para>
|
|
/// For catch, the general method of calculating the combo proportion used for other rulesets is generally useless.
|
|
/// This is because in stable score V1, catch has quadratic score progression,
|
|
/// while in stable score V2, score progression is logarithmic up to 200 combo and then linear.
|
|
/// </para>
|
|
/// <para>
|
|
/// This means that applying the naive rescale method to scores with lots of short combos (think 10x 100-long combos on a 1000-object map)
|
|
/// by linearly rescaling the combo portion as given by score V1 leads to horribly underestimating it.
|
|
/// Therefore this method attempts to counteract this by calculating the best case estimate for the combo proportion that takes all of the above into account.
|
|
/// </para>
|
|
/// <para>
|
|
/// The general idea is that aside from the <paramref name="scoreMaxCombo"/> which the player is known to have hit,
|
|
/// the remaining misses are evenly distributed across the rest of the objects that give combo.
|
|
/// This is therefore a worst-case estimate.
|
|
/// </para>
|
|
/// </summary>
|
|
private static double estimateComboProportionForCatch(int beatmapMaxCombo, int scoreMaxCombo, int scoreMissCount)
|
|
{
|
|
if (beatmapMaxCombo == 0)
|
|
return 1;
|
|
|
|
if (scoreMaxCombo == 0)
|
|
return 0;
|
|
|
|
if (beatmapMaxCombo == scoreMaxCombo)
|
|
return 1;
|
|
|
|
double estimatedBestCaseTotal = estimateBestCaseComboTotal(beatmapMaxCombo);
|
|
|
|
int remainingCombo = beatmapMaxCombo - (scoreMaxCombo + scoreMissCount);
|
|
double totalDroppedScore = 0;
|
|
|
|
int assumedLengthOfRemainingCombos = (int)Math.Floor((double)remainingCombo / scoreMissCount);
|
|
|
|
if (assumedLengthOfRemainingCombos > 0)
|
|
{
|
|
int assumedCombosCount = (int)Math.Floor((double)remainingCombo / assumedLengthOfRemainingCombos);
|
|
totalDroppedScore += assumedCombosCount * estimateDroppedComboScoreAfterMiss(assumedLengthOfRemainingCombos);
|
|
|
|
remainingCombo -= assumedCombosCount * assumedLengthOfRemainingCombos;
|
|
|
|
if (remainingCombo > 0)
|
|
totalDroppedScore += estimateDroppedComboScoreAfterMiss(remainingCombo);
|
|
}
|
|
else
|
|
{
|
|
// there are so many misses that attempting to evenly divide remaining combo results in 0 length per combo,
|
|
// i.e. all remaining judgements are combo breaks.
|
|
// in that case, presume every single remaining object is a miss and did not give any combo score.
|
|
totalDroppedScore = estimatedBestCaseTotal - estimateBestCaseComboTotal(scoreMaxCombo);
|
|
}
|
|
|
|
return estimatedBestCaseTotal == 0
|
|
? 1
|
|
: 1 - Math.Clamp(totalDroppedScore / estimatedBestCaseTotal, 0, 1);
|
|
|
|
double estimateBestCaseComboTotal(int maxCombo)
|
|
{
|
|
if (maxCombo == 0)
|
|
return 1;
|
|
|
|
double estimatedTotal = 0.5 * Math.Min(maxCombo, 2);
|
|
|
|
if (maxCombo <= 2)
|
|
return estimatedTotal;
|
|
|
|
// int_2^x log_4(t) dt
|
|
estimatedTotal += (Math.Min(maxCombo, 200) * (Math.Log(Math.Min(maxCombo, 200)) - 1) + 2 - Math.Log(4)) / Math.Log(4);
|
|
|
|
if (maxCombo <= 200)
|
|
return estimatedTotal;
|
|
|
|
estimatedTotal += (maxCombo - 200) * Math.Log(200) / Math.Log(4);
|
|
return estimatedTotal;
|
|
}
|
|
|
|
double estimateDroppedComboScoreAfterMiss(int lengthOfComboAfterMiss)
|
|
{
|
|
if (lengthOfComboAfterMiss >= 200)
|
|
lengthOfComboAfterMiss = 200;
|
|
|
|
// int_0^x (log_4(200) - log_4(t)) dt
|
|
// note that this is an pessimistic estimate, i.e. it may subtract too much if the miss happened before reaching 200 combo
|
|
return lengthOfComboAfterMiss * (1 + Math.Log(200) - Math.Log(lengthOfComboAfterMiss)) / Math.Log(4);
|
|
}
|
|
}
|
|
|
|
private static double computeAccuracy(ScoreInfo scoreInfo, ScoreProcessor scoreProcessor)
|
|
{
|
|
int baseScore = scoreInfo.Statistics.Where(kvp => kvp.Key.AffectsAccuracy())
|
|
.Sum(kvp => kvp.Value * scoreProcessor.GetBaseScoreForResult(kvp.Key));
|
|
int maxBaseScore = scoreInfo.MaximumStatistics.Where(kvp => kvp.Key.AffectsAccuracy())
|
|
.Sum(kvp => kvp.Value * scoreProcessor.GetBaseScoreForResult(kvp.Key));
|
|
|
|
return maxBaseScore == 0 ? 1 : baseScore / (double)maxBaseScore;
|
|
}
|
|
|
|
public static ScoreRank ComputeRank(ScoreInfo scoreInfo) => computeRank(scoreInfo, scoreInfo.Ruleset.CreateInstance().CreateScoreProcessor());
|
|
|
|
private static ScoreRank computeRank(ScoreInfo scoreInfo, ScoreProcessor scoreProcessor)
|
|
{
|
|
var rank = scoreProcessor.RankFromScore(scoreInfo.Accuracy, scoreInfo.Statistics);
|
|
|
|
foreach (var mod in scoreInfo.Mods.OfType<IApplicableToScoreProcessor>())
|
|
rank = mod.AdjustRank(rank, scoreInfo.Accuracy);
|
|
|
|
return rank;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Used to populate the <paramref name="score"/> model using data parsed from its corresponding replay file.
|
|
/// </summary>
|
|
/// <param name="score">The score to run population from replay for.</param>
|
|
/// <param name="files">A <see cref="RealmFileStore"/> instance to use for fetching replay.</param>
|
|
/// <param name="populationFunc">
|
|
/// Delegate describing the population to execute.
|
|
/// The delegate's argument is a <see cref="SerializationReader"/> instance which permits to read data from the replay stream.
|
|
/// </param>
|
|
public static void PopulateFromReplay(this ScoreInfo score, RealmFileStore files, Action<SerializationReader> populationFunc)
|
|
{
|
|
string? replayFilename = score.Files.FirstOrDefault(f => f.Filename.EndsWith(@".osr", StringComparison.InvariantCultureIgnoreCase))?.File.GetStoragePath();
|
|
if (replayFilename == null)
|
|
return;
|
|
|
|
try
|
|
{
|
|
using (var stream = files.Store.GetStream(replayFilename))
|
|
{
|
|
if (stream == null)
|
|
return;
|
|
|
|
using (SerializationReader sr = new SerializationReader(stream))
|
|
populationFunc.Invoke(sr);
|
|
}
|
|
}
|
|
catch (Exception e)
|
|
{
|
|
Logger.Error(e, $"Failed to read replay {replayFilename} during score migration", LoggingTarget.Database);
|
|
}
|
|
}
|
|
|
|
private class FakeHit : HitObject
|
|
{
|
|
private readonly Judgement judgement;
|
|
|
|
public override Judgement CreateJudgement() => judgement;
|
|
|
|
public FakeHit(Judgement judgement)
|
|
{
|
|
this.judgement = judgement;
|
|
}
|
|
}
|
|
|
|
private class FakeJudgement : Judgement
|
|
{
|
|
public override HitResult MaxResult { get; }
|
|
|
|
public FakeJudgement(HitResult maxResult)
|
|
{
|
|
MaxResult = maxResult;
|
|
}
|
|
}
|
|
}
|
|
}
|