mirror of https://github.com/ppy/osu
Make slider parsing kind of exist.
This commit is contained in:
parent
bd8856611a
commit
4c61a13e71
|
@ -10,9 +10,11 @@
|
|||
using OpenTK;
|
||||
using osu.Framework;
|
||||
using osu.Framework.Allocation;
|
||||
using osu.Framework.Graphics.Sprites;
|
||||
using osu.Game.Modes.Objects;
|
||||
using osu.Game.Modes.Osu.Objects;
|
||||
using osu.Game.Screens.Play;
|
||||
using OpenTK.Graphics;
|
||||
|
||||
namespace osu.Desktop.VisualTests.Tests
|
||||
{
|
||||
|
@ -41,7 +43,8 @@ public override void Reset()
|
|||
objects.Add(new HitCircle()
|
||||
{
|
||||
StartTime = time,
|
||||
Position = new Vector2(RNG.Next(0, 512), RNG.Next(0, 384)),
|
||||
Position = new Vector2(i % 4 == 0 || i % 4 == 2 ? 0 : 512,
|
||||
i % 4 < 2 ? 0 : 384),
|
||||
NewCombo = i % 4 == 0
|
||||
});
|
||||
|
||||
|
@ -57,6 +60,12 @@ public override void Reset()
|
|||
|
||||
decoder.Process(b);
|
||||
|
||||
Add(new Box
|
||||
{
|
||||
RelativeSizeAxes = Framework.Graphics.Axes.Both,
|
||||
Colour = Color4.Gray,
|
||||
});
|
||||
|
||||
Add(new Player
|
||||
{
|
||||
Beatmap = new WorkingBeatmap(b)
|
||||
|
|
|
@ -30,8 +30,7 @@ public DrawableHitCircle(HitCircle h) : base(h)
|
|||
this.h = h;
|
||||
|
||||
Origin = Anchor.Centre;
|
||||
RelativePositionAxes = Axes.Both;
|
||||
Position = new Vector2(h.Position.X / 512, h.Position.Y / 384);
|
||||
Position = h.Position;
|
||||
|
||||
Children = new Drawable[]
|
||||
{
|
||||
|
|
|
@ -1,4 +1,9 @@
|
|||
using osu.Game.Modes.Objects.Drawables;
|
||||
using osu.Framework.Graphics;
|
||||
using osu.Framework.Graphics.Sprites;
|
||||
using osu.Game.Modes.Objects.Drawables;
|
||||
using osu.Game.Modes.Osu.Objects.Drawables.Pieces;
|
||||
using OpenTK;
|
||||
using OpenTK.Graphics;
|
||||
|
||||
namespace osu.Game.Modes.Osu.Objects.Drawables
|
||||
{
|
||||
|
@ -6,12 +11,42 @@ class DrawableSlider : DrawableHitObject
|
|||
{
|
||||
public DrawableSlider(Slider h) : base(h)
|
||||
{
|
||||
Origin = Anchor.Centre;
|
||||
RelativePositionAxes = Axes.Both;
|
||||
Position = new Vector2(h.Position.X / 512, h.Position.Y / 384);
|
||||
|
||||
for (float i = 0; i <= 1; i += 0.1f)
|
||||
{
|
||||
Add(new CirclePiece
|
||||
{
|
||||
Colour = h.Colour,
|
||||
Hit = Hit,
|
||||
Position = h.Curve.PositionAt(i) - h.Position //non-relative?
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
protected override void LoadComplete()
|
||||
{
|
||||
base.LoadComplete();
|
||||
|
||||
//force application of the state that was set before we loaded.
|
||||
UpdateState(State);
|
||||
}
|
||||
|
||||
protected override void UpdateState(ArmedState state)
|
||||
{
|
||||
if (!IsLoaded) return;
|
||||
|
||||
Flush(true); //move to DrawableHitObject
|
||||
|
||||
Alpha = 0;
|
||||
|
||||
Delay(HitObject.StartTime - 200 - Time.Current, true);
|
||||
|
||||
FadeIn(200);
|
||||
Delay(200 + HitObject.Duration);
|
||||
FadeOut(200);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.Globalization;
|
||||
using System.Linq;
|
||||
using System.Text;
|
||||
using System.Threading.Tasks;
|
||||
|
@ -25,7 +26,68 @@ public override HitObject Parse(string text)
|
|||
result = new HitCircle();
|
||||
break;
|
||||
case OsuBaseHit.HitObjectType.Slider:
|
||||
result = new Slider();
|
||||
Slider s = new Slider();
|
||||
|
||||
CurveTypes curveType = CurveTypes.Catmull;
|
||||
int repeatCount = 0;
|
||||
double length = 0;
|
||||
List<Vector2> points = new List<Vector2>();
|
||||
|
||||
points.Add(new Vector2(int.Parse(split[0]), int.Parse(split[1])));
|
||||
|
||||
string[] pointsplit = split[5].Split('|');
|
||||
for (int i = 0; i < pointsplit.Length; i++)
|
||||
{
|
||||
if (pointsplit[i].Length == 1)
|
||||
{
|
||||
switch (pointsplit[i])
|
||||
{
|
||||
case @"C":
|
||||
curveType = CurveTypes.Catmull;
|
||||
break;
|
||||
case @"B":
|
||||
curveType = CurveTypes.Bezier;
|
||||
break;
|
||||
case @"L":
|
||||
curveType = CurveTypes.Linear;
|
||||
break;
|
||||
case @"P":
|
||||
curveType = CurveTypes.PerfectCurve;
|
||||
break;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
string[] temp = pointsplit[i].Split(':');
|
||||
Vector2 v = new Vector2(
|
||||
(int)Convert.ToDouble(temp[0], CultureInfo.InvariantCulture),
|
||||
(int)Convert.ToDouble(temp[1], CultureInfo.InvariantCulture)
|
||||
);
|
||||
points.Add(v);
|
||||
}
|
||||
|
||||
repeatCount = Convert.ToInt32(split[6], CultureInfo.InvariantCulture);
|
||||
|
||||
if (repeatCount > 9000)
|
||||
{
|
||||
throw new ArgumentOutOfRangeException("wacky man");
|
||||
}
|
||||
|
||||
if (split.Length > 7)
|
||||
length = Convert.ToDouble(split[7], CultureInfo.InvariantCulture);
|
||||
|
||||
s.RepeatCount = repeatCount;
|
||||
|
||||
s.Curve = new SliderCurve
|
||||
{
|
||||
Path = points,
|
||||
Length = length,
|
||||
CurveType = curveType
|
||||
};
|
||||
|
||||
s.Curve.Calculate();
|
||||
|
||||
result = s;
|
||||
break;
|
||||
case OsuBaseHit.HitObjectType.Spinner:
|
||||
result = new Spinner();
|
||||
|
|
|
@ -8,8 +8,198 @@ namespace osu.Game.Modes.Osu.Objects
|
|||
{
|
||||
public class Slider : OsuBaseHit
|
||||
{
|
||||
public List<Vector2> Path;
|
||||
public override double EndTime => StartTime + (RepeatCount + 1) * Curve.Length;
|
||||
|
||||
public int RepeatCount;
|
||||
|
||||
public SliderCurve Curve;
|
||||
|
||||
}
|
||||
|
||||
public class SliderCurve
|
||||
{
|
||||
public double Length;
|
||||
|
||||
public List<Vector2> Path;
|
||||
|
||||
public CurveTypes CurveType;
|
||||
|
||||
private List<Vector2> calculatedPath;
|
||||
|
||||
public void Calculate()
|
||||
{
|
||||
switch (CurveType)
|
||||
{
|
||||
case CurveTypes.Linear:
|
||||
calculatedPath = Path;
|
||||
break;
|
||||
default:
|
||||
var bezier = new BezierApproximator(Path);
|
||||
calculatedPath = bezier.CreateBezier();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
public Vector2 PositionAt(double progress)
|
||||
{
|
||||
int index = (int)(progress * (calculatedPath.Count - 1));
|
||||
|
||||
Vector2 pos = calculatedPath[index];
|
||||
if (index != progress)
|
||||
pos += (calculatedPath[index + 1] - pos) * (float)(progress - index);
|
||||
|
||||
return pos;
|
||||
}
|
||||
}
|
||||
|
||||
public class BezierApproximator
|
||||
{
|
||||
private int count;
|
||||
private List<Vector2> controlPoints;
|
||||
private Vector2[] subdivisionBuffer1;
|
||||
private Vector2[] subdivisionBuffer2;
|
||||
|
||||
private const float TOLERANCE = 0.5f;
|
||||
private const float TOLERANCE_SQ = TOLERANCE * TOLERANCE;
|
||||
|
||||
public BezierApproximator(List<Vector2> controlPoints)
|
||||
{
|
||||
this.controlPoints = controlPoints;
|
||||
count = controlPoints.Count;
|
||||
|
||||
subdivisionBuffer1 = new Vector2[count];
|
||||
subdivisionBuffer2 = new Vector2[count * 2 - 1];
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Make sure the 2nd order derivative (approximated using finite elements) is within tolerable bounds.
|
||||
/// NOTE: The 2nd order derivative of a 2d curve represents its curvature, so intuitively this function
|
||||
/// checks (as the name suggests) whether our approximation is _locally_ "flat". More curvy parts
|
||||
/// need to have a denser approximation to be more "flat".
|
||||
/// </summary>
|
||||
/// <param name="controlPoints">The control points to check for flatness.</param>
|
||||
/// <returns>Whether the control points are flat enough.</returns>
|
||||
private static bool IsFlatEnough(Vector2[] controlPoints)
|
||||
{
|
||||
for (int i = 1; i < controlPoints.Length - 1; i++)
|
||||
if ((controlPoints[i - 1] - 2 * controlPoints[i] + controlPoints[i + 1]).LengthSquared > TOLERANCE_SQ)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Subdivides n control points representing a bezier curve into 2 sets of n control points, each
|
||||
/// describing a bezier curve equivalent to a half of the original curve. Effectively this splits
|
||||
/// the original curve into 2 curves which result in the original curve when pieced back together.
|
||||
/// </summary>
|
||||
/// <param name="controlPoints">The control points to split.</param>
|
||||
/// <param name="l">Output: The control points corresponding to the left half of the curve.</param>
|
||||
/// <param name="r">Output: The control points corresponding to the right half of the curve.</param>
|
||||
private void Subdivide(Vector2[] controlPoints, Vector2[] l, Vector2[] r)
|
||||
{
|
||||
Vector2[] midpoints = subdivisionBuffer1;
|
||||
|
||||
for (int i = 0; i < count; ++i)
|
||||
midpoints[i] = controlPoints[i];
|
||||
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
l[i] = midpoints[0];
|
||||
r[count - i - 1] = midpoints[count - i - 1];
|
||||
|
||||
for (int j = 0; j < count - i - 1; j++)
|
||||
midpoints[j] = (midpoints[j] + midpoints[j + 1]) / 2;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// This uses <a href="https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm">De Casteljau's algorithm</a> to obtain an optimal
|
||||
/// piecewise-linear approximation of the bezier curve with the same amount of points as there are control points.
|
||||
/// </summary>
|
||||
/// <param name="controlPoints">The control points describing the bezier curve to be approximated.</param>
|
||||
/// <param name="output">The points representing the resulting piecewise-linear approximation.</param>
|
||||
private void Approximate(Vector2[] controlPoints, List<Vector2> output)
|
||||
{
|
||||
Vector2[] l = subdivisionBuffer2;
|
||||
Vector2[] r = subdivisionBuffer1;
|
||||
|
||||
Subdivide(controlPoints, l, r);
|
||||
|
||||
for (int i = 0; i < count - 1; ++i)
|
||||
l[count + i] = r[i + 1];
|
||||
|
||||
output.Add(controlPoints[0]);
|
||||
for (int i = 1; i < count - 1; ++i)
|
||||
{
|
||||
int index = 2 * i;
|
||||
Vector2 p = 0.25f * (l[index - 1] + 2 * l[index] + l[index + 1]);
|
||||
output.Add(p);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates a piecewise-linear approximation of a bezier curve, by adaptively repeatedly subdividing
|
||||
/// the control points until their approximation error vanishes below a given threshold.
|
||||
/// </summary>
|
||||
/// <param name="controlPoints">The control points describing the curve.</param>
|
||||
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
||||
public List<Vector2> CreateBezier()
|
||||
{
|
||||
List<Vector2> output = new List<Vector2>();
|
||||
|
||||
if (count == 0)
|
||||
return output;
|
||||
|
||||
Stack<Vector2[]> toFlatten = new Stack<Vector2[]>();
|
||||
Stack<Vector2[]> freeBuffers = new Stack<Vector2[]>();
|
||||
|
||||
// "toFlatten" contains all the curves which are not yet approximated well enough.
|
||||
// We use a stack to emulate recursion without the risk of running into a stack overflow.
|
||||
// (More specifically, we iteratively and adaptively refine our curve with a
|
||||
// <a href="https://en.wikipedia.org/wiki/Depth-first_search">Depth-first search</a>
|
||||
// over the tree resulting from the subdivisions we make.)
|
||||
toFlatten.Push(controlPoints.ToArray());
|
||||
|
||||
Vector2[] leftChild = subdivisionBuffer2;
|
||||
|
||||
while (toFlatten.Count > 0)
|
||||
{
|
||||
Vector2[] parent = toFlatten.Pop();
|
||||
if (IsFlatEnough(parent))
|
||||
{
|
||||
// If the control points we currently operate on are sufficiently "flat", we use
|
||||
// an extension to De Casteljau's algorithm to obtain a piecewise-linear approximation
|
||||
// of the bezier curve represented by our control points, consisting of the same amount
|
||||
// of points as there are control points.
|
||||
Approximate(parent, output);
|
||||
freeBuffers.Push(parent);
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we do not yet have a sufficiently "flat" (in other words, detailed) approximation we keep
|
||||
// subdividing the curve we are currently operating on.
|
||||
Vector2[] rightChild = freeBuffers.Count > 0 ? freeBuffers.Pop() : new Vector2[count];
|
||||
Subdivide(parent, leftChild, rightChild);
|
||||
|
||||
// We re-use the buffer of the parent for one of the children, so that we save one allocation per iteration.
|
||||
for (int i = 0; i < count; ++i)
|
||||
parent[i] = leftChild[i];
|
||||
|
||||
toFlatten.Push(rightChild);
|
||||
toFlatten.Push(parent);
|
||||
}
|
||||
|
||||
output.Add(controlPoints[count - 1]);
|
||||
return output;
|
||||
}
|
||||
}
|
||||
|
||||
public enum CurveTypes
|
||||
{
|
||||
Catmull,
|
||||
Bezier,
|
||||
Linear,
|
||||
PerfectCurve
|
||||
};
|
||||
}
|
||||
|
|
|
@ -18,6 +18,13 @@ public class OsuHitRenderer : HitRenderer<OsuBaseHit>
|
|||
protected override Playfield CreatePlayfield() => new OsuPlayfield();
|
||||
|
||||
protected override DrawableHitObject GetVisualRepresentation(OsuBaseHit h)
|
||||
=> h is HitCircle ? new DrawableHitCircle(h as HitCircle) : null;
|
||||
{
|
||||
if (h is HitCircle)
|
||||
return new DrawableHitCircle(h as HitCircle);
|
||||
if (h is Slider)
|
||||
return new DrawableSlider(h as Slider);
|
||||
|
||||
return null;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue