Make slider parsing kind of exist.

This commit is contained in:
Dean Herbert 2016-11-17 21:29:35 +09:00
parent bd8856611a
commit 4c61a13e71
6 changed files with 309 additions and 7 deletions

View File

@ -10,9 +10,11 @@
using OpenTK;
using osu.Framework;
using osu.Framework.Allocation;
using osu.Framework.Graphics.Sprites;
using osu.Game.Modes.Objects;
using osu.Game.Modes.Osu.Objects;
using osu.Game.Screens.Play;
using OpenTK.Graphics;
namespace osu.Desktop.VisualTests.Tests
{
@ -41,7 +43,8 @@ public override void Reset()
objects.Add(new HitCircle()
{
StartTime = time,
Position = new Vector2(RNG.Next(0, 512), RNG.Next(0, 384)),
Position = new Vector2(i % 4 == 0 || i % 4 == 2 ? 0 : 512,
i % 4 < 2 ? 0 : 384),
NewCombo = i % 4 == 0
});
@ -57,6 +60,12 @@ public override void Reset()
decoder.Process(b);
Add(new Box
{
RelativeSizeAxes = Framework.Graphics.Axes.Both,
Colour = Color4.Gray,
});
Add(new Player
{
Beatmap = new WorkingBeatmap(b)

View File

@ -30,8 +30,7 @@ public DrawableHitCircle(HitCircle h) : base(h)
this.h = h;
Origin = Anchor.Centre;
RelativePositionAxes = Axes.Both;
Position = new Vector2(h.Position.X / 512, h.Position.Y / 384);
Position = h.Position;
Children = new Drawable[]
{

View File

@ -1,4 +1,9 @@
using osu.Game.Modes.Objects.Drawables;
using osu.Framework.Graphics;
using osu.Framework.Graphics.Sprites;
using osu.Game.Modes.Objects.Drawables;
using osu.Game.Modes.Osu.Objects.Drawables.Pieces;
using OpenTK;
using OpenTK.Graphics;
namespace osu.Game.Modes.Osu.Objects.Drawables
{
@ -6,12 +11,42 @@ class DrawableSlider : DrawableHitObject
{
public DrawableSlider(Slider h) : base(h)
{
Origin = Anchor.Centre;
RelativePositionAxes = Axes.Both;
Position = new Vector2(h.Position.X / 512, h.Position.Y / 384);
for (float i = 0; i <= 1; i += 0.1f)
{
Add(new CirclePiece
{
Colour = h.Colour,
Hit = Hit,
Position = h.Curve.PositionAt(i) - h.Position //non-relative?
});
}
}
protected override void LoadComplete()
{
base.LoadComplete();
//force application of the state that was set before we loaded.
UpdateState(State);
}
protected override void UpdateState(ArmedState state)
{
if (!IsLoaded) return;
Flush(true); //move to DrawableHitObject
Alpha = 0;
Delay(HitObject.StartTime - 200 - Time.Current, true);
FadeIn(200);
Delay(200 + HitObject.Duration);
FadeOut(200);
}
}
}

View File

@ -1,5 +1,6 @@
using System;
using System.Collections.Generic;
using System.Globalization;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
@ -25,7 +26,68 @@ public override HitObject Parse(string text)
result = new HitCircle();
break;
case OsuBaseHit.HitObjectType.Slider:
result = new Slider();
Slider s = new Slider();
CurveTypes curveType = CurveTypes.Catmull;
int repeatCount = 0;
double length = 0;
List<Vector2> points = new List<Vector2>();
points.Add(new Vector2(int.Parse(split[0]), int.Parse(split[1])));
string[] pointsplit = split[5].Split('|');
for (int i = 0; i < pointsplit.Length; i++)
{
if (pointsplit[i].Length == 1)
{
switch (pointsplit[i])
{
case @"C":
curveType = CurveTypes.Catmull;
break;
case @"B":
curveType = CurveTypes.Bezier;
break;
case @"L":
curveType = CurveTypes.Linear;
break;
case @"P":
curveType = CurveTypes.PerfectCurve;
break;
}
continue;
}
string[] temp = pointsplit[i].Split(':');
Vector2 v = new Vector2(
(int)Convert.ToDouble(temp[0], CultureInfo.InvariantCulture),
(int)Convert.ToDouble(temp[1], CultureInfo.InvariantCulture)
);
points.Add(v);
}
repeatCount = Convert.ToInt32(split[6], CultureInfo.InvariantCulture);
if (repeatCount > 9000)
{
throw new ArgumentOutOfRangeException("wacky man");
}
if (split.Length > 7)
length = Convert.ToDouble(split[7], CultureInfo.InvariantCulture);
s.RepeatCount = repeatCount;
s.Curve = new SliderCurve
{
Path = points,
Length = length,
CurveType = curveType
};
s.Curve.Calculate();
result = s;
break;
case OsuBaseHit.HitObjectType.Spinner:
result = new Spinner();

View File

@ -8,8 +8,198 @@ namespace osu.Game.Modes.Osu.Objects
{
public class Slider : OsuBaseHit
{
public List<Vector2> Path;
public override double EndTime => StartTime + (RepeatCount + 1) * Curve.Length;
public int RepeatCount;
public SliderCurve Curve;
}
public class SliderCurve
{
public double Length;
public List<Vector2> Path;
public CurveTypes CurveType;
private List<Vector2> calculatedPath;
public void Calculate()
{
switch (CurveType)
{
case CurveTypes.Linear:
calculatedPath = Path;
break;
default:
var bezier = new BezierApproximator(Path);
calculatedPath = bezier.CreateBezier();
break;
}
}
public Vector2 PositionAt(double progress)
{
int index = (int)(progress * (calculatedPath.Count - 1));
Vector2 pos = calculatedPath[index];
if (index != progress)
pos += (calculatedPath[index + 1] - pos) * (float)(progress - index);
return pos;
}
}
public class BezierApproximator
{
private int count;
private List<Vector2> controlPoints;
private Vector2[] subdivisionBuffer1;
private Vector2[] subdivisionBuffer2;
private const float TOLERANCE = 0.5f;
private const float TOLERANCE_SQ = TOLERANCE * TOLERANCE;
public BezierApproximator(List<Vector2> controlPoints)
{
this.controlPoints = controlPoints;
count = controlPoints.Count;
subdivisionBuffer1 = new Vector2[count];
subdivisionBuffer2 = new Vector2[count * 2 - 1];
}
/// <summary>
/// Make sure the 2nd order derivative (approximated using finite elements) is within tolerable bounds.
/// NOTE: The 2nd order derivative of a 2d curve represents its curvature, so intuitively this function
/// checks (as the name suggests) whether our approximation is _locally_ "flat". More curvy parts
/// need to have a denser approximation to be more "flat".
/// </summary>
/// <param name="controlPoints">The control points to check for flatness.</param>
/// <returns>Whether the control points are flat enough.</returns>
private static bool IsFlatEnough(Vector2[] controlPoints)
{
for (int i = 1; i < controlPoints.Length - 1; i++)
if ((controlPoints[i - 1] - 2 * controlPoints[i] + controlPoints[i + 1]).LengthSquared > TOLERANCE_SQ)
return false;
return true;
}
/// <summary>
/// Subdivides n control points representing a bezier curve into 2 sets of n control points, each
/// describing a bezier curve equivalent to a half of the original curve. Effectively this splits
/// the original curve into 2 curves which result in the original curve when pieced back together.
/// </summary>
/// <param name="controlPoints">The control points to split.</param>
/// <param name="l">Output: The control points corresponding to the left half of the curve.</param>
/// <param name="r">Output: The control points corresponding to the right half of the curve.</param>
private void Subdivide(Vector2[] controlPoints, Vector2[] l, Vector2[] r)
{
Vector2[] midpoints = subdivisionBuffer1;
for (int i = 0; i < count; ++i)
midpoints[i] = controlPoints[i];
for (int i = 0; i < count; i++)
{
l[i] = midpoints[0];
r[count - i - 1] = midpoints[count - i - 1];
for (int j = 0; j < count - i - 1; j++)
midpoints[j] = (midpoints[j] + midpoints[j + 1]) / 2;
}
}
/// <summary>
/// This uses <a href="https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm">De Casteljau's algorithm</a> to obtain an optimal
/// piecewise-linear approximation of the bezier curve with the same amount of points as there are control points.
/// </summary>
/// <param name="controlPoints">The control points describing the bezier curve to be approximated.</param>
/// <param name="output">The points representing the resulting piecewise-linear approximation.</param>
private void Approximate(Vector2[] controlPoints, List<Vector2> output)
{
Vector2[] l = subdivisionBuffer2;
Vector2[] r = subdivisionBuffer1;
Subdivide(controlPoints, l, r);
for (int i = 0; i < count - 1; ++i)
l[count + i] = r[i + 1];
output.Add(controlPoints[0]);
for (int i = 1; i < count - 1; ++i)
{
int index = 2 * i;
Vector2 p = 0.25f * (l[index - 1] + 2 * l[index] + l[index + 1]);
output.Add(p);
}
}
/// <summary>
/// Creates a piecewise-linear approximation of a bezier curve, by adaptively repeatedly subdividing
/// the control points until their approximation error vanishes below a given threshold.
/// </summary>
/// <param name="controlPoints">The control points describing the curve.</param>
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
public List<Vector2> CreateBezier()
{
List<Vector2> output = new List<Vector2>();
if (count == 0)
return output;
Stack<Vector2[]> toFlatten = new Stack<Vector2[]>();
Stack<Vector2[]> freeBuffers = new Stack<Vector2[]>();
// "toFlatten" contains all the curves which are not yet approximated well enough.
// We use a stack to emulate recursion without the risk of running into a stack overflow.
// (More specifically, we iteratively and adaptively refine our curve with a
// <a href="https://en.wikipedia.org/wiki/Depth-first_search">Depth-first search</a>
// over the tree resulting from the subdivisions we make.)
toFlatten.Push(controlPoints.ToArray());
Vector2[] leftChild = subdivisionBuffer2;
while (toFlatten.Count > 0)
{
Vector2[] parent = toFlatten.Pop();
if (IsFlatEnough(parent))
{
// If the control points we currently operate on are sufficiently "flat", we use
// an extension to De Casteljau's algorithm to obtain a piecewise-linear approximation
// of the bezier curve represented by our control points, consisting of the same amount
// of points as there are control points.
Approximate(parent, output);
freeBuffers.Push(parent);
continue;
}
// If we do not yet have a sufficiently "flat" (in other words, detailed) approximation we keep
// subdividing the curve we are currently operating on.
Vector2[] rightChild = freeBuffers.Count > 0 ? freeBuffers.Pop() : new Vector2[count];
Subdivide(parent, leftChild, rightChild);
// We re-use the buffer of the parent for one of the children, so that we save one allocation per iteration.
for (int i = 0; i < count; ++i)
parent[i] = leftChild[i];
toFlatten.Push(rightChild);
toFlatten.Push(parent);
}
output.Add(controlPoints[count - 1]);
return output;
}
}
public enum CurveTypes
{
Catmull,
Bezier,
Linear,
PerfectCurve
};
}

View File

@ -18,6 +18,13 @@ public class OsuHitRenderer : HitRenderer<OsuBaseHit>
protected override Playfield CreatePlayfield() => new OsuPlayfield();
protected override DrawableHitObject GetVisualRepresentation(OsuBaseHit h)
=> h is HitCircle ? new DrawableHitCircle(h as HitCircle) : null;
{
if (h is HitCircle)
return new DrawableHitCircle(h as HitCircle);
if (h is Slider)
return new DrawableSlider(h as Slider);
return null;
}
}
}