2021-07-19 04:03:53 +00:00
// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
using System ;
using System.Collections.Generic ;
using System.Linq ;
using osu.Framework.Utils ;
using osu.Game.Rulesets.Objects ;
using osu.Game.Rulesets.Objects.Types ;
using osuTK ;
#nullable enable
namespace osu.Game.Rulesets.Catch.Objects
{
/// <summary>
/// Represents the path of a juice stream.
/// <para>
/// A <see cref="JuiceStream"/> holds a legacy <see cref="SliderPath"/> as the representation of the path.
/// However, the <see cref="SliderPath"/> representation is difficult to work with.
/// This <see cref="JuiceStreamPath"/> represents the path in a more convenient way, a polyline connecting list of <see cref="JuiceStreamPathVertex"/>s.
/// </para>
/// <para>
/// The path can be regarded as a function from the closed interval <c>[Vertices[0].Distance, Vertices[^1].Distance]</c> to the x position, given by <see cref="PositionAtDistance"/>.
/// To ensure the path is convertible to a <see cref="SliderPath"/>, the slope of the function must not be more than <c>1</c> everywhere,
/// and this slope condition is always maintained as an invariant.
/// </para>
/// </summary>
public class JuiceStreamPath
{
2021-07-19 09:41:29 +00:00
/// <summary>
/// The height of legacy osu!standard playfield.
/// The sliders converted by <see cref="ConvertToSliderPath"/> are vertically contained in this height.
/// </summary>
internal const float OSU_PLAYFIELD_HEIGHT = 384 ;
2021-07-19 04:03:53 +00:00
/// <summary>
/// The list of vertices of the path, which is represented as a polyline connecting the vertices.
/// </summary>
public IReadOnlyList < JuiceStreamPathVertex > Vertices = > vertices ;
/// <summary>
/// The current version number.
/// This starts from <c>1</c> and incremented whenever this <see cref="JuiceStreamPath"/> is modified.
/// </summary>
public int InvalidationID { get ; private set ; } = 1 ;
/// <summary>
/// The difference between first vertex's <see cref="JuiceStreamPathVertex.Distance"/> and last vertex's <see cref="JuiceStreamPathVertex.Distance"/>.
/// </summary>
public double Distance = > vertices [ ^ 1 ] . Distance - vertices [ 0 ] . Distance ;
/// <remarks>
/// This list should always be non-empty.
/// </remarks>
private readonly List < JuiceStreamPathVertex > vertices = new List < JuiceStreamPathVertex >
{
new JuiceStreamPathVertex ( )
} ;
/// <summary>
/// Compute the x-position of the path at the given <paramref name="distance"/>.
/// </summary>
/// <remarks>
/// When the given distance is outside of the path, the x position at the corresponding endpoint is returned,
/// </remarks>
public float PositionAtDistance ( double distance )
{
int index = vertexIndexAtDistance ( distance ) ;
return positionAtDistance ( distance , index ) ;
}
/// <summary>
/// Remove all vertices of this path, then add a new vertex <c>(0, 0)</c>.
/// </summary>
public void Clear ( )
{
vertices . Clear ( ) ;
vertices . Add ( new JuiceStreamPathVertex ( ) ) ;
invalidate ( ) ;
}
/// <summary>
/// Insert a vertex at given <paramref name="distance"/>.
/// The <see cref="PositionAtDistance"/> is used as the position of the new vertex.
/// Thus, the set of points of the path is not changed (up to floating-point precision).
/// </summary>
/// <returns>The index of the new vertex.</returns>
public int InsertVertex ( double distance )
{
if ( ! double . IsFinite ( distance ) )
throw new ArgumentOutOfRangeException ( nameof ( distance ) ) ;
int index = vertexIndexAtDistance ( distance ) ;
float x = positionAtDistance ( distance , index ) ;
vertices . Insert ( index , new JuiceStreamPathVertex ( distance , x ) ) ;
invalidate ( ) ;
return index ;
}
/// <summary>
/// Move the vertex of given <paramref name="index"/> to the given position <paramref name="newX"/>.
/// When the distances between vertices are too small for the new vertex positions, the adjacent vertices are moved towards <paramref name="newX"/>.
/// </summary>
public void SetVertexPosition ( int index , float newX )
{
if ( index < 0 | | index > = vertices . Count )
throw new ArgumentOutOfRangeException ( nameof ( index ) ) ;
if ( ! float . IsFinite ( newX ) )
throw new ArgumentOutOfRangeException ( nameof ( newX ) ) ;
var newVertex = new JuiceStreamPathVertex ( vertices [ index ] . Distance , newX ) ;
for ( int i = index - 1 ; i > = 0 & & ! canConnect ( vertices [ i ] , newVertex ) ; i - - )
{
float clampedX = clampToConnectablePosition ( newVertex , vertices [ i ] ) ;
vertices [ i ] = new JuiceStreamPathVertex ( vertices [ i ] . Distance , clampedX ) ;
}
for ( int i = index + 1 ; i < vertices . Count ; i + + )
{
float clampedX = clampToConnectablePosition ( newVertex , vertices [ i ] ) ;
vertices [ i ] = new JuiceStreamPathVertex ( vertices [ i ] . Distance , clampedX ) ;
}
vertices [ index ] = newVertex ;
invalidate ( ) ;
}
/// <summary>
/// Add a new vertex at given <paramref name="distance"/> and position.
/// Adjacent vertices are moved when necessary in the same way as <see cref="SetVertexPosition"/>.
/// </summary>
public void Add ( double distance , float x )
{
int index = InsertVertex ( distance ) ;
SetVertexPosition ( index , x ) ;
}
/// <summary>
/// Remove all vertices that satisfy the given <paramref name="predicate"/>.
/// </summary>
/// <remarks>
/// If all vertices are removed, a new vertex <c>(0, 0)</c> is added.
/// </remarks>
/// <param name="predicate">The predicate to determine whether a vertex should be removed given the vertex and its index in the path.</param>
/// <returns>The number of removed vertices.</returns>
public int RemoveVertices ( Func < JuiceStreamPathVertex , int , bool > predicate )
{
int index = 0 ;
int removeCount = vertices . RemoveAll ( vertex = > predicate ( vertex , index + + ) ) ;
if ( vertices . Count = = 0 )
vertices . Add ( new JuiceStreamPathVertex ( ) ) ;
if ( removeCount ! = 0 )
invalidate ( ) ;
return removeCount ;
}
/// <summary>
/// Recreate this path by using difference set of vertices at given distances.
/// In addition to the given <paramref name="sampleDistances"/>, the first vertex and the last vertex are always added to the new path.
/// New vertices use the positions on the original path. Thus, <see cref="PositionAtDistance"/>s at <paramref name="sampleDistances"/> are preserved.
/// </summary>
public void ResampleVertices ( IEnumerable < double > sampleDistances )
{
var sampledVertices = new List < JuiceStreamPathVertex > ( ) ;
foreach ( double distance in sampleDistances )
{
if ( ! double . IsFinite ( distance ) )
throw new ArgumentOutOfRangeException ( nameof ( sampleDistances ) ) ;
double clampedDistance = Math . Clamp ( distance , vertices [ 0 ] . Distance , vertices [ ^ 1 ] . Distance ) ;
float x = PositionAtDistance ( clampedDistance ) ;
sampledVertices . Add ( new JuiceStreamPathVertex ( clampedDistance , x ) ) ;
}
sampledVertices . Sort ( ) ;
// The first vertex and the last vertex are always used in the result.
vertices . RemoveRange ( 1 , vertices . Count - ( vertices . Count = = 1 ? 1 : 2 ) ) ;
vertices . InsertRange ( 1 , sampledVertices ) ;
invalidate ( ) ;
}
/// <summary>
/// Convert a <see cref="SliderPath"/> to list of vertices and write the result to this <see cref="JuiceStreamPath"/>.
/// </summary>
/// <remarks>
/// Duplicated vertices are automatically removed.
/// </remarks>
public void ConvertFromSliderPath ( SliderPath sliderPath )
{
var sliderPathVertices = new List < Vector2 > ( ) ;
sliderPath . GetPathToProgress ( sliderPathVertices , 0 , 1 ) ;
double distance = 0 ;
vertices . Clear ( ) ;
vertices . Add ( new JuiceStreamPathVertex ( 0 , sliderPathVertices . FirstOrDefault ( ) . X ) ) ;
for ( int i = 1 ; i < sliderPathVertices . Count ; i + + )
{
distance + = Vector2 . Distance ( sliderPathVertices [ i - 1 ] , sliderPathVertices [ i ] ) ;
if ( ! Precision . AlmostEquals ( vertices [ ^ 1 ] . Distance , distance ) )
vertices . Add ( new JuiceStreamPathVertex ( distance , sliderPathVertices [ i ] . X ) ) ;
}
invalidate ( ) ;
}
/// <summary>
/// Convert the path of this <see cref="JuiceStreamPath"/> to a <see cref="SliderPath"/> and write the result to <paramref name="sliderPath"/>.
/// The resulting slider is "folded" to make it vertically contained in the playfield `(0..<see cref="OSU_PLAYFIELD_HEIGHT"/>)` assuming the slider start position is <paramref name="sliderStartY"/>.
/// </summary>
public void ConvertToSliderPath ( SliderPath sliderPath , float sliderStartY )
{
const float margin = 1 ;
// Note: these two variables and `sliderPath` are modified by the local functions.
double currentDistance = 0 ;
Vector2 lastPosition = new Vector2 ( vertices [ 0 ] . X , 0 ) ;
sliderPath . ControlPoints . Clear ( ) ;
sliderPath . ControlPoints . Add ( new PathControlPoint ( lastPosition ) ) ;
for ( int i = 1 ; i < vertices . Count ; i + + )
{
sliderPath . ControlPoints [ ^ 1 ] . Type . Value = PathType . Linear ;
float deltaX = vertices [ i ] . X - lastPosition . X ;
double length = vertices [ i ] . Distance - currentDistance ;
// Should satisfy `deltaX^2 + deltaY^2 = length^2`.
// By invariants, the expression inside the `sqrt` is (almost) non-negative.
double deltaY = Math . Sqrt ( Math . Max ( 0 , length * length - ( double ) deltaX * deltaX ) ) ;
// When `deltaY` is small, one segment is always enough.
// This case is handled separately to prevent divide-by-zero.
if ( deltaY < = OSU_PLAYFIELD_HEIGHT / 2 - margin )
{
float nextX = vertices [ i ] . X ;
float nextY = ( float ) ( lastPosition . Y + getYDirection ( ) * deltaY ) ;
addControlPoint ( nextX , nextY ) ;
continue ;
}
// When `deltaY` is large or when the slider velocity is fast, the segment must be partitioned to subsegments to stay in bounds.
for ( double currentProgress = 0 ; currentProgress < deltaY ; )
{
double nextProgress = Math . Min ( currentProgress + getMaxDeltaY ( ) , deltaY ) ;
float nextX = ( float ) ( vertices [ i - 1 ] . X + nextProgress / deltaY * deltaX ) ;
float nextY = ( float ) ( lastPosition . Y + getYDirection ( ) * ( nextProgress - currentProgress ) ) ;
addControlPoint ( nextX , nextY ) ;
currentProgress = nextProgress ;
}
}
int getYDirection ( )
{
float lastSliderY = sliderStartY + lastPosition . Y ;
return lastSliderY < OSU_PLAYFIELD_HEIGHT / 2 ? 1 : - 1 ;
}
float getMaxDeltaY ( )
{
float lastSliderY = sliderStartY + lastPosition . Y ;
return Math . Max ( lastSliderY , OSU_PLAYFIELD_HEIGHT - lastSliderY ) - margin ;
}
void addControlPoint ( float nextX , float nextY )
{
Vector2 nextPosition = new Vector2 ( nextX , nextY ) ;
sliderPath . ControlPoints . Add ( new PathControlPoint ( nextPosition ) ) ;
currentDistance + = Vector2 . Distance ( lastPosition , nextPosition ) ;
lastPosition = nextPosition ;
}
}
/// <summary>
/// Find the index at which a new vertex with <paramref name="distance"/> can be inserted.
/// </summary>
private int vertexIndexAtDistance ( double distance )
{
// The position of `(distance, Infinity)` is uniquely determined because infinite positions are not allowed.
int i = vertices . BinarySearch ( new JuiceStreamPathVertex ( distance , float . PositiveInfinity ) ) ;
return i < 0 ? ~ i : i ;
}
/// <summary>
/// Compute the position at the given <paramref name="distance"/>, assuming <paramref name="index"/> is the vertex index returned by <see cref="vertexIndexAtDistance"/>.
/// </summary>
private float positionAtDistance ( double distance , int index )
{
if ( index < = 0 )
return vertices [ 0 ] . X ;
if ( index > = vertices . Count )
return vertices [ ^ 1 ] . X ;
double length = vertices [ index ] . Distance - vertices [ index - 1 ] . Distance ;
if ( Precision . AlmostEquals ( length , 0 ) )
return vertices [ index ] . X ;
float deltaX = vertices [ index ] . X - vertices [ index - 1 ] . X ;
return ( float ) ( vertices [ index - 1 ] . X + deltaX * ( ( distance - vertices [ index - 1 ] . Distance ) / length ) ) ;
}
/// <summary>
/// Check the two vertices can connected directly while satisfying the slope condition.
/// </summary>
private bool canConnect ( JuiceStreamPathVertex vertex1 , JuiceStreamPathVertex vertex2 , float allowance = 0 )
{
double xDistance = Math . Abs ( ( double ) vertex2 . X - vertex1 . X ) ;
float length = ( float ) Math . Abs ( vertex2 . Distance - vertex1 . Distance ) ;
return xDistance < = length + allowance ;
}
/// <summary>
/// Move the position of <paramref name="movableVertex"/> towards the position of <paramref name="fixedVertex"/>
/// until the vertex pair satisfies the condition <see cref="canConnect"/>.
/// </summary>
/// <returns>The resulting position of <paramref name="movableVertex"/>.</returns>
private float clampToConnectablePosition ( JuiceStreamPathVertex fixedVertex , JuiceStreamPathVertex movableVertex )
{
float length = ( float ) Math . Abs ( movableVertex . Distance - fixedVertex . Distance ) ;
return Math . Clamp ( movableVertex . X , fixedVertex . X - length , fixedVertex . X + length ) ;
}
private void invalidate ( ) = > InvalidationID + + ;
}
}