mirror of
git://git.openwrt.org/openwrt/openwrt.git
synced 2025-01-24 15:43:09 +00:00
86e18f6706
* QCA IPQ401x * 256 MB of RAM * 32 MB of SPI NOR flash (s25fl256s1) - 2x 15 MB available; but one of the 15 MB regions is the recovery image * 2T2R 2.4 GHz - QCA4019 hw1.0 (SoC) - requires special BDF in QCA4019/hw1.0/board-2.bin with bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=OM-A42 * 2T2R 5 GHz - QCA4019 hw1.0 (SoC) - requires special BDF in QCA4019/hw1.0/board-2.bin with bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=OM-A42 * multi-color LED (controlled via red/green/blue GPIOs) * 1x button (reset; kmod-input-gpio-keys compatible) * external watchdog - triggered GPIO * 1x USB (xHCI) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x gigabit ethernet * powered only via POE - 802.3af POE on Ethernet 1 - 18-24v passive POE (mode B) on Ethernet 2 The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the factory image to the u-boot when the device boots up. Signed-off-by: Sven Eckelmann <sven.eckelmann@open-mesh.com>
111 lines
4.2 KiB
Bash
111 lines
4.2 KiB
Bash
# The U-Boot loader of the OpenMesh devices requires image sizes and
|
|
# checksums to be provided in the U-Boot environment.
|
|
# The OpenMesh devices come with 2 main partitions - while one is active
|
|
# sysupgrade will flash the other. The boot order is changed to boot the
|
|
# newly flashed partition. If the new partition can't be booted due to
|
|
# upgrade failures the previously used partition is loaded.
|
|
|
|
platform_do_upgrade_openmesh() {
|
|
local tar_file="$1"
|
|
local restore_backup
|
|
local primary_kernel_mtd
|
|
|
|
local setenv_script="/tmp/fw_env_upgrade"
|
|
|
|
local kernel_mtd="$(find_mtd_index $PART_NAME)"
|
|
local kernel_offset="$(cat /sys/class/mtd/mtd${kernel_mtd}/offset)"
|
|
local total_size="$(cat /sys/class/mtd/mtd${kernel_mtd}/size)"
|
|
|
|
# detect to which flash region the new image is written to.
|
|
#
|
|
# 1. check what is the mtd index for the first flash region on this
|
|
# device
|
|
# 2. check if the target partition ("inactive") has the mtd index of
|
|
# the first flash region
|
|
#
|
|
# - when it is: the new bootseq will be 1,2 and the first region is
|
|
# modified
|
|
# - when it isnt: bootseq will be 2,1 and the second region is
|
|
# modified
|
|
#
|
|
# The detection has to be done via the hardcoded mtd partition because
|
|
# the current boot might be done with the fallback region. Let us
|
|
# assume that the current bootseq is 1,2. The bootloader detected that
|
|
# the image in flash region 1 is corrupt and thus switches to flash
|
|
# region 2. The bootseq in the u-boot-env is now still the same and
|
|
# the sysupgrade code can now only rely on the actual mtd indexes and
|
|
# not the bootseq variable to detect the currently booted flash
|
|
# region/image.
|
|
#
|
|
# In the above example, an implementation which uses bootseq ("1,2") to
|
|
# detect the currently booted image would assume that region 1 is booted
|
|
# and then overwrite the variables for the wrong flash region (aka the
|
|
# one which isn't modified). This could result in a device which doesn't
|
|
# boot anymore to Linux until it was reflashed with ap51-flash.
|
|
local next_boot_part="1"
|
|
case "$(board_name)" in
|
|
openmesh,a42)
|
|
primary_kernel_mtd=8
|
|
;;
|
|
*)
|
|
echo "failed to detect primary kernel mtd partition for board"
|
|
return 1
|
|
;;
|
|
esac
|
|
[ "$kernel_mtd" = "$primary_kernel_mtd" ] || next_boot_part="2"
|
|
|
|
local board_dir=$(tar tf $tar_file | grep -m 1 '^sysupgrade-.*/$')
|
|
board_dir=${board_dir%/}
|
|
|
|
local kernel_length=$(tar xf $tar_file ${board_dir}/kernel -O | wc -c)
|
|
local rootfs_length=$(tar xf $tar_file ${board_dir}/root -O | wc -c)
|
|
# rootfs without EOF marker
|
|
rootfs_length=$((rootfs_length-4))
|
|
|
|
local kernel_md5=$(tar xf $tar_file ${board_dir}/kernel -O | md5sum); kernel_md5="${kernel_md5%% *}"
|
|
# md5 checksum of rootfs with EOF marker
|
|
local rootfs_md5=$(tar xf $tar_file ${board_dir}/root -O | dd bs=1 count=$rootfs_length | md5sum); rootfs_md5="${rootfs_md5%% *}"
|
|
|
|
#
|
|
# add tar support to get_image() to use default_do_upgrade() instead?
|
|
#
|
|
|
|
# take care of restoring a saved config
|
|
[ "$SAVE_CONFIG" -eq 1 ] && restore_backup="${MTD_CONFIG_ARGS} -j ${CONF_TAR}"
|
|
|
|
# write concatinated kernel + rootfs to flash
|
|
tar xf $tar_file ${board_dir}/kernel ${board_dir}/root -O | \
|
|
mtd $restore_backup write - $PART_NAME
|
|
|
|
# prepare new u-boot env
|
|
if [ "$next_boot_part" = "1" ]; then
|
|
echo "bootseq 1,2" > $setenv_script
|
|
else
|
|
echo "bootseq 2,1" > $setenv_script
|
|
fi
|
|
|
|
printf "kernel_size_%i 0x%08x\n" $next_boot_part $kernel_length >> $setenv_script
|
|
printf "vmlinux_start_addr 0x%08x\n" ${kernel_offset} >> $setenv_script
|
|
printf "vmlinux_size 0x%08x\n" ${kernel_length} >> $setenv_script
|
|
printf "vmlinux_checksum %s\n" ${kernel_md5} >> $setenv_script
|
|
|
|
printf "rootfs_size_%i 0x%08x\n" $next_boot_part $((total_size-kernel_length)) >> $setenv_script
|
|
printf "rootfs_start_addr 0x%08x\n" $((kernel_offset+kernel_length)) >> $setenv_script
|
|
printf "rootfs_size 0x%08x\n" ${rootfs_length} >> $setenv_script
|
|
printf "rootfs_checksum %s\n" ${rootfs_md5} >> $setenv_script
|
|
|
|
# store u-boot env changes
|
|
fw_setenv -s $setenv_script || {
|
|
echo "failed to update U-Boot environment"
|
|
return 1
|
|
}
|
|
}
|
|
|
|
# create /var/lock for the lock "fw_setenv.lock" of fw_setenv
|
|
# the rest is copied using ipq806x's RAMFS_COPY_BIN and RAMFS_COPY_DATA
|
|
platform_add_ramfs_ubootenv()
|
|
{
|
|
mkdir -p $RAM_ROOT/var/lock
|
|
}
|
|
append sysupgrade_pre_upgrade platform_add_ramfs_ubootenv
|