bcb5d6b21b
The interrupt controller depends on two control registers. GIMR enables or disables interrupts and IRRx routes these to MIPS CPU interrupts 2-7. Wiki currently states "A value of '0' (in IRRx) disconnects this input from the output line, independent of the line's setting in GIMR." Contrary to normal intuition this statement DOES NOT mean, that interrupts can be disabled by IRRx alone. The sad truth was discovered by enabling SMP for an Zyxel XGS1010 on the 930x target. It shows that driver and interrupts behave as follows: - Timer 0 interrupt 7 has active routing to CPU0 and no routing to CPU1 - Timer 1 interrupt 8 has no routing to CPU0 and active routing to CPU1 - Unmasking (enabling) interrupts writes 1 bits to all GIMR registers - Masking (disabling) interrupts writes 0 bits to both GIMR registers During operation we can encounter a situation like - GIMR bit for a interrupt/CPU combination is set to enabed (=1) - IRRx routing bits for a interrupt/CPU combination are set to disabed (=0) This setting already allows the hardware to fire interrupts to the target CPU/VPE if the other CPU/VPE is currently busy. Especially for CPU bound timer interrupts this is lethal. If timer interrupt 7 arrives at CPU1 and vice versa for interrupt 8 the restart trigger gets lost. The timer dies and a msleep() operation in the kernel will halt endlessly. Fix this by tracking the IRRx active routing setting in a new bitfield with 0="routing active" and 1="no routing". Enable interrupts in GIMR only for a interrupt & CPU if routing is active. Thus we have - GIMR = 0 / IRRx = 0 -> everything disabled - GIMR = 1 / IRRx > 0 -> active and normal routing - GIMR = 0 / IRRx > 0 -> masked (disabled) with normal routing - GIMR = 1 / IRRx = 0 -> no longer possible Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de> |
||
---|---|---|
.github | ||
config | ||
include | ||
LICENSES | ||
package | ||
scripts | ||
target | ||
toolchain | ||
tools | ||
.gitattributes | ||
.gitignore | ||
BSDmakefile | ||
Config.in | ||
COPYING | ||
feeds.conf.default | ||
Makefile | ||
README.md | ||
rules.mk |
OpenWrt Project is a Linux operating system targeting embedded devices. Instead of trying to create a single, static firmware, OpenWrt provides a fully writable filesystem with package management. This frees you from the application selection and configuration provided by the vendor and allows you to customize the device through the use of packages to suit any application. For developers, OpenWrt is the framework to build an application without having to build a complete firmware around it; for users this means the ability for full customization, to use the device in ways never envisioned.
Sunshine!
Development
To build your own firmware you need a GNU/Linux, BSD or MacOSX system (case sensitive filesystem required). Cygwin is unsupported because of the lack of a case sensitive file system.
Requirements
You need the following tools to compile OpenWrt, the package names vary between distributions. A complete list with distribution specific packages is found in the Build System Setup documentation.
binutils bzip2 diff find flex gawk gcc-6+ getopt grep install libc-dev libz-dev
make4.1+ perl python3.6+ rsync subversion unzip which
Quickstart
-
Run
./scripts/feeds update -a
to obtain all the latest package definitions defined in feeds.conf / feeds.conf.default -
Run
./scripts/feeds install -a
to install symlinks for all obtained packages into package/feeds/ -
Run
make menuconfig
to select your preferred configuration for the toolchain, target system & firmware packages. -
Run
make
to build your firmware. This will download all sources, build the cross-compile toolchain and then cross-compile the GNU/Linux kernel & all chosen applications for your target system.
Related Repositories
The main repository uses multiple sub-repositories to manage packages of
different categories. All packages are installed via the OpenWrt package
manager called opkg
. If you're looking to develop the web interface or port
packages to OpenWrt, please find the fitting repository below.
-
LuCI Web Interface: Modern and modular interface to control the device via a web browser.
-
OpenWrt Packages: Community repository of ported packages.
-
OpenWrt Routing: Packages specifically focused on (mesh) routing.
-
OpenWrt Video: Packages specifically focused on display servers and clients (Xorg and Wayland).
Support Information
For a list of supported devices see the OpenWrt Hardware Database
Documentation
Support Community
- Forum: For usage, projects, discussions and hardware advise.
- Support Chat: Channel
#openwrt
on oftc.net.
Developer Community
- Bug Reports: Report bugs in OpenWrt
- Dev Mailing List: Send patches
- Dev Chat: Channel
#openwrt-devel
on oftc.net.
License
OpenWrt is licensed under GPL-2.0