855 lines
21 KiB
C
855 lines
21 KiB
C
/*
|
|
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* -- MD5 code:
|
|
*
|
|
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
|
|
* MD5 Message-Digest Algorithm (RFC 1321).
|
|
*
|
|
* Homepage:
|
|
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
|
|
*
|
|
* Author:
|
|
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
|
|
*
|
|
* This software was written by Alexander Peslyak in 2001. No copyright is
|
|
* claimed, and the software is hereby placed in the public domain.
|
|
* In case this attempt to disclaim copyright and place the software in the
|
|
* public domain is deemed null and void, then the software is
|
|
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
|
|
* general public under the following terms:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted.
|
|
*
|
|
* There's ABSOLUTELY NO WARRANTY, express or implied.
|
|
*
|
|
* (This is a heavily cut-down "BSD license".)
|
|
*
|
|
* This differs from Colin Plumb's older public domain implementation in that
|
|
* no exactly 32-bit integer data type is required (any 32-bit or wider
|
|
* unsigned integer data type will do), there's no compile-time endianness
|
|
* configuration, and the function prototypes match OpenSSL's. No code from
|
|
* Colin Plumb's implementation has been reused; this comment merely compares
|
|
* the properties of the two independent implementations.
|
|
*
|
|
* The primary goals of this implementation are portability and ease of use.
|
|
* It is meant to be fast, but not as fast as possible. Some known
|
|
* optimizations are not included to reduce source code size and avoid
|
|
* compile-time configuration.
|
|
*
|
|
* -- SHA256 Code:
|
|
*
|
|
* Copyright 2005 Colin Percival
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __FreeBSD__
|
|
#include <endian.h>
|
|
#else
|
|
#include <sys/endian.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <unistd.h>
|
|
#include <sys/stat.h>
|
|
|
|
#define ARRAY_SIZE(_n) (sizeof(_n) / sizeof((_n)[0]))
|
|
|
|
#ifndef __FreeBSD__
|
|
static void
|
|
be32enc(void *buf, uint32_t u)
|
|
{
|
|
uint8_t *p = buf;
|
|
|
|
p[0] = ((uint8_t) ((u >> 24) & 0xff));
|
|
p[1] = ((uint8_t) ((u >> 16) & 0xff));
|
|
p[2] = ((uint8_t) ((u >> 8) & 0xff));
|
|
p[3] = ((uint8_t) (u & 0xff));
|
|
}
|
|
|
|
static void
|
|
be64enc(void *buf, uint64_t u)
|
|
{
|
|
uint8_t *p = buf;
|
|
|
|
be32enc(p, ((uint32_t) (u >> 32)));
|
|
be32enc(p + 4, ((uint32_t) (u & 0xffffffffULL)));
|
|
}
|
|
|
|
|
|
static uint16_t
|
|
be16dec(const void *buf)
|
|
{
|
|
const uint8_t *p = buf;
|
|
|
|
return (((uint16_t) p[0]) << 8) | p[1];
|
|
}
|
|
|
|
static uint32_t
|
|
be32dec(const void *buf)
|
|
{
|
|
const uint8_t *p = buf;
|
|
|
|
return (((uint32_t) be16dec(p)) << 16) | be16dec(p + 2);
|
|
}
|
|
#endif
|
|
|
|
#define MD5_DIGEST_LENGTH 16
|
|
|
|
typedef struct MD5_CTX {
|
|
uint32_t lo, hi;
|
|
uint32_t a, b, c, d;
|
|
unsigned char buffer[64];
|
|
} MD5_CTX;
|
|
|
|
/*
|
|
* The basic MD5 functions.
|
|
*
|
|
* F and G are optimized compared to their RFC 1321 definitions for
|
|
* architectures that lack an AND-NOT instruction, just like in Colin Plumb's
|
|
* implementation.
|
|
*/
|
|
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
|
|
#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
|
|
#define H(x, y, z) (((x) ^ (y)) ^ (z))
|
|
#define H2(x, y, z) ((x) ^ ((y) ^ (z)))
|
|
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
|
|
|
|
/*
|
|
* The MD5 transformation for all four rounds.
|
|
*/
|
|
#define STEP(f, a, b, c, d, x, t, s) \
|
|
(a) += f((b), (c), (d)) + (x) + (t); \
|
|
(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
|
|
(a) += (b);
|
|
|
|
/*
|
|
* SET reads 4 input bytes in little-endian byte order and stores them
|
|
* in a properly aligned word in host byte order.
|
|
*/
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
#define SET(n) \
|
|
(*(uint32_t *)&ptr[(n) * 4])
|
|
#define GET(n) \
|
|
SET(n)
|
|
#else
|
|
#define SET(n) \
|
|
(block[(n)] = \
|
|
(uint32_t)ptr[(n) * 4] | \
|
|
((uint32_t)ptr[(n) * 4 + 1] << 8) | \
|
|
((uint32_t)ptr[(n) * 4 + 2] << 16) | \
|
|
((uint32_t)ptr[(n) * 4 + 3] << 24))
|
|
#define GET(n) \
|
|
(block[(n)])
|
|
#endif
|
|
|
|
/*
|
|
* This processes one or more 64-byte data blocks, but does NOT update
|
|
* the bit counters. There are no alignment requirements.
|
|
*/
|
|
static const void *MD5_body(MD5_CTX *ctx, const void *data, unsigned long size)
|
|
{
|
|
const unsigned char *ptr;
|
|
uint32_t a, b, c, d;
|
|
uint32_t saved_a, saved_b, saved_c, saved_d;
|
|
#if __BYTE_ORDER != __LITTLE_ENDIAN
|
|
uint32_t block[16];
|
|
#endif
|
|
|
|
ptr = (const unsigned char *)data;
|
|
|
|
a = ctx->a;
|
|
b = ctx->b;
|
|
c = ctx->c;
|
|
d = ctx->d;
|
|
|
|
do {
|
|
saved_a = a;
|
|
saved_b = b;
|
|
saved_c = c;
|
|
saved_d = d;
|
|
|
|
/* Round 1 */
|
|
STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
|
|
STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
|
|
STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
|
|
STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
|
|
STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
|
|
STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
|
|
STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
|
|
STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
|
|
STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
|
|
STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
|
|
STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
|
|
STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
|
|
STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
|
|
STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
|
|
STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
|
|
STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
|
|
|
|
/* Round 2 */
|
|
STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
|
|
STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
|
|
STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
|
|
STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
|
|
STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
|
|
STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
|
|
STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
|
|
STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
|
|
STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
|
|
STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
|
|
STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
|
|
STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
|
|
STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
|
|
STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
|
|
STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
|
|
STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
|
|
|
|
/* Round 3 */
|
|
STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
|
|
STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11)
|
|
STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
|
|
STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23)
|
|
STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
|
|
STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11)
|
|
STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
|
|
STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23)
|
|
STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
|
|
STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11)
|
|
STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
|
|
STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23)
|
|
STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
|
|
STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11)
|
|
STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
|
|
STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23)
|
|
|
|
/* Round 4 */
|
|
STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
|
|
STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
|
|
STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
|
|
STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
|
|
STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
|
|
STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
|
|
STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
|
|
STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
|
|
STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
|
|
STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
|
|
STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
|
|
STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
|
|
STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
|
|
STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
|
|
STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
|
|
STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
|
|
|
|
a += saved_a;
|
|
b += saved_b;
|
|
c += saved_c;
|
|
d += saved_d;
|
|
|
|
ptr += 64;
|
|
} while (size -= 64);
|
|
|
|
ctx->a = a;
|
|
ctx->b = b;
|
|
ctx->c = c;
|
|
ctx->d = d;
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void MD5_begin(MD5_CTX *ctx)
|
|
{
|
|
ctx->a = 0x67452301;
|
|
ctx->b = 0xefcdab89;
|
|
ctx->c = 0x98badcfe;
|
|
ctx->d = 0x10325476;
|
|
|
|
ctx->lo = 0;
|
|
ctx->hi = 0;
|
|
}
|
|
|
|
static void
|
|
MD5_hash(const void *data, size_t size, MD5_CTX *ctx)
|
|
{
|
|
uint32_t saved_lo;
|
|
unsigned long used, available;
|
|
|
|
saved_lo = ctx->lo;
|
|
if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
|
|
ctx->hi++;
|
|
ctx->hi += size >> 29;
|
|
|
|
used = saved_lo & 0x3f;
|
|
|
|
if (used) {
|
|
available = 64 - used;
|
|
|
|
if (size < available) {
|
|
memcpy(&ctx->buffer[used], data, size);
|
|
return;
|
|
}
|
|
|
|
memcpy(&ctx->buffer[used], data, available);
|
|
data = (const unsigned char *)data + available;
|
|
size -= available;
|
|
MD5_body(ctx, ctx->buffer, 64);
|
|
}
|
|
|
|
if (size >= 64) {
|
|
data = MD5_body(ctx, data, size & ~((size_t) 0x3f));
|
|
size &= 0x3f;
|
|
}
|
|
|
|
memcpy(ctx->buffer, data, size);
|
|
}
|
|
|
|
static void
|
|
MD5_end(void *resbuf, MD5_CTX *ctx)
|
|
{
|
|
unsigned char *result = resbuf;
|
|
unsigned long used, available;
|
|
|
|
used = ctx->lo & 0x3f;
|
|
|
|
ctx->buffer[used++] = 0x80;
|
|
|
|
available = 64 - used;
|
|
|
|
if (available < 8) {
|
|
memset(&ctx->buffer[used], 0, available);
|
|
MD5_body(ctx, ctx->buffer, 64);
|
|
used = 0;
|
|
available = 64;
|
|
}
|
|
|
|
memset(&ctx->buffer[used], 0, available - 8);
|
|
|
|
ctx->lo <<= 3;
|
|
ctx->buffer[56] = ctx->lo;
|
|
ctx->buffer[57] = ctx->lo >> 8;
|
|
ctx->buffer[58] = ctx->lo >> 16;
|
|
ctx->buffer[59] = ctx->lo >> 24;
|
|
ctx->buffer[60] = ctx->hi;
|
|
ctx->buffer[61] = ctx->hi >> 8;
|
|
ctx->buffer[62] = ctx->hi >> 16;
|
|
ctx->buffer[63] = ctx->hi >> 24;
|
|
|
|
MD5_body(ctx, ctx->buffer, 64);
|
|
|
|
result[0] = ctx->a;
|
|
result[1] = ctx->a >> 8;
|
|
result[2] = ctx->a >> 16;
|
|
result[3] = ctx->a >> 24;
|
|
result[4] = ctx->b;
|
|
result[5] = ctx->b >> 8;
|
|
result[6] = ctx->b >> 16;
|
|
result[7] = ctx->b >> 24;
|
|
result[8] = ctx->c;
|
|
result[9] = ctx->c >> 8;
|
|
result[10] = ctx->c >> 16;
|
|
result[11] = ctx->c >> 24;
|
|
result[12] = ctx->d;
|
|
result[13] = ctx->d >> 8;
|
|
result[14] = ctx->d >> 16;
|
|
result[15] = ctx->d >> 24;
|
|
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
}
|
|
|
|
#define SHA256_BLOCK_LENGTH 64
|
|
#define SHA256_DIGEST_LENGTH 32
|
|
#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1)
|
|
|
|
typedef struct SHA256Context {
|
|
uint32_t state[8];
|
|
uint64_t count;
|
|
uint8_t buf[SHA256_BLOCK_LENGTH];
|
|
} SHA256_CTX;
|
|
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
|
|
/* Copy a vector of big-endian uint32_t into a vector of bytes */
|
|
#define be32enc_vect(dst, src, len) \
|
|
memcpy((void *)dst, (const void *)src, (size_t)len)
|
|
|
|
/* Copy a vector of bytes into a vector of big-endian uint32_t */
|
|
#define be32dec_vect(dst, src, len) \
|
|
memcpy((void *)dst, (const void *)src, (size_t)len)
|
|
|
|
#else /* BYTE_ORDER != BIG_ENDIAN */
|
|
|
|
/*
|
|
* Encode a length len/4 vector of (uint32_t) into a length len vector of
|
|
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
|
|
*/
|
|
static void
|
|
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len / 4; i++)
|
|
be32enc(dst + i * 4, src[i]);
|
|
}
|
|
|
|
/*
|
|
* Decode a big-endian length len vector of (unsigned char) into a length
|
|
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
|
|
*/
|
|
static void
|
|
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len / 4; i++)
|
|
dst[i] = be32dec(src + i * 4);
|
|
}
|
|
|
|
#endif /* BYTE_ORDER != BIG_ENDIAN */
|
|
|
|
|
|
/* Elementary functions used by SHA256 */
|
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
|
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
|
|
|
|
/*
|
|
* SHA256 block compression function. The 256-bit state is transformed via
|
|
* the 512-bit input block to produce a new state.
|
|
*/
|
|
static void
|
|
SHA256_Transform(uint32_t * state, const unsigned char block[64])
|
|
{
|
|
/* SHA256 round constants. */
|
|
static const uint32_t K[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
uint32_t W[64];
|
|
uint32_t S[8];
|
|
int i;
|
|
|
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
|
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
|
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3))
|
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10))
|
|
|
|
/* SHA256 round function */
|
|
#define RND(a, b, c, d, e, f, g, h, k) \
|
|
h += S1(e) + Ch(e, f, g) + k; \
|
|
d += h; \
|
|
h += S0(a) + Maj(a, b, c);
|
|
|
|
/* Adjusted round function for rotating state */
|
|
#define RNDr(S, W, i, ii) \
|
|
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
|
|
S[(66 - i) % 8], S[(67 - i) % 8], \
|
|
S[(68 - i) % 8], S[(69 - i) % 8], \
|
|
S[(70 - i) % 8], S[(71 - i) % 8], \
|
|
W[i + ii] + K[i + ii])
|
|
|
|
/* Message schedule computation */
|
|
#define MSCH(W, ii, i) \
|
|
W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]
|
|
|
|
/* 1. Prepare the first part of the message schedule W. */
|
|
be32dec_vect(W, block, 64);
|
|
|
|
/* 2. Initialize working variables. */
|
|
memcpy(S, state, 32);
|
|
|
|
/* 3. Mix. */
|
|
for (i = 0; i < 64; i += 16) {
|
|
RNDr(S, W, 0, i);
|
|
RNDr(S, W, 1, i);
|
|
RNDr(S, W, 2, i);
|
|
RNDr(S, W, 3, i);
|
|
RNDr(S, W, 4, i);
|
|
RNDr(S, W, 5, i);
|
|
RNDr(S, W, 6, i);
|
|
RNDr(S, W, 7, i);
|
|
RNDr(S, W, 8, i);
|
|
RNDr(S, W, 9, i);
|
|
RNDr(S, W, 10, i);
|
|
RNDr(S, W, 11, i);
|
|
RNDr(S, W, 12, i);
|
|
RNDr(S, W, 13, i);
|
|
RNDr(S, W, 14, i);
|
|
RNDr(S, W, 15, i);
|
|
|
|
if (i == 48)
|
|
break;
|
|
MSCH(W, 0, i);
|
|
MSCH(W, 1, i);
|
|
MSCH(W, 2, i);
|
|
MSCH(W, 3, i);
|
|
MSCH(W, 4, i);
|
|
MSCH(W, 5, i);
|
|
MSCH(W, 6, i);
|
|
MSCH(W, 7, i);
|
|
MSCH(W, 8, i);
|
|
MSCH(W, 9, i);
|
|
MSCH(W, 10, i);
|
|
MSCH(W, 11, i);
|
|
MSCH(W, 12, i);
|
|
MSCH(W, 13, i);
|
|
MSCH(W, 14, i);
|
|
MSCH(W, 15, i);
|
|
}
|
|
|
|
#undef S0
|
|
#undef s0
|
|
#undef S1
|
|
#undef s1
|
|
#undef RND
|
|
#undef RNDr
|
|
#undef MSCH
|
|
|
|
/* 4. Mix local working variables into global state */
|
|
for (i = 0; i < 8; i++)
|
|
state[i] += S[i];
|
|
}
|
|
|
|
static unsigned char PAD[64] = {
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
/* Add padding and terminating bit-count. */
|
|
static void
|
|
SHA256_Pad(SHA256_CTX * ctx)
|
|
{
|
|
size_t r;
|
|
|
|
/* Figure out how many bytes we have buffered. */
|
|
r = (ctx->count >> 3) & 0x3f;
|
|
|
|
/* Pad to 56 mod 64, transforming if we finish a block en route. */
|
|
if (r < 56) {
|
|
/* Pad to 56 mod 64. */
|
|
memcpy(&ctx->buf[r], PAD, 56 - r);
|
|
} else {
|
|
/* Finish the current block and mix. */
|
|
memcpy(&ctx->buf[r], PAD, 64 - r);
|
|
SHA256_Transform(ctx->state, ctx->buf);
|
|
|
|
/* The start of the final block is all zeroes. */
|
|
memset(&ctx->buf[0], 0, 56);
|
|
}
|
|
|
|
/* Add the terminating bit-count. */
|
|
be64enc(&ctx->buf[56], ctx->count);
|
|
|
|
/* Mix in the final block. */
|
|
SHA256_Transform(ctx->state, ctx->buf);
|
|
}
|
|
|
|
/* SHA-256 initialization. Begins a SHA-256 operation. */
|
|
static void
|
|
SHA256_Init(SHA256_CTX * ctx)
|
|
{
|
|
|
|
/* Zero bits processed so far */
|
|
ctx->count = 0;
|
|
|
|
/* Magic initialization constants */
|
|
ctx->state[0] = 0x6A09E667;
|
|
ctx->state[1] = 0xBB67AE85;
|
|
ctx->state[2] = 0x3C6EF372;
|
|
ctx->state[3] = 0xA54FF53A;
|
|
ctx->state[4] = 0x510E527F;
|
|
ctx->state[5] = 0x9B05688C;
|
|
ctx->state[6] = 0x1F83D9AB;
|
|
ctx->state[7] = 0x5BE0CD19;
|
|
}
|
|
|
|
/* Add bytes into the hash */
|
|
static void
|
|
SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
|
|
{
|
|
uint64_t bitlen;
|
|
uint32_t r;
|
|
const unsigned char *src = in;
|
|
|
|
/* Number of bytes left in the buffer from previous updates */
|
|
r = (ctx->count >> 3) & 0x3f;
|
|
|
|
/* Convert the length into a number of bits */
|
|
bitlen = len << 3;
|
|
|
|
/* Update number of bits */
|
|
ctx->count += bitlen;
|
|
|
|
/* Handle the case where we don't need to perform any transforms */
|
|
if (len < 64 - r) {
|
|
memcpy(&ctx->buf[r], src, len);
|
|
return;
|
|
}
|
|
|
|
/* Finish the current block */
|
|
memcpy(&ctx->buf[r], src, 64 - r);
|
|
SHA256_Transform(ctx->state, ctx->buf);
|
|
src += 64 - r;
|
|
len -= 64 - r;
|
|
|
|
/* Perform complete blocks */
|
|
while (len >= 64) {
|
|
SHA256_Transform(ctx->state, src);
|
|
src += 64;
|
|
len -= 64;
|
|
}
|
|
|
|
/* Copy left over data into buffer */
|
|
memcpy(ctx->buf, src, len);
|
|
}
|
|
|
|
/*
|
|
* SHA-256 finalization. Pads the input data, exports the hash value,
|
|
* and clears the context state.
|
|
*/
|
|
static void
|
|
SHA256_Final(unsigned char digest[static SHA256_DIGEST_LENGTH], SHA256_CTX *ctx)
|
|
{
|
|
/* Add padding */
|
|
SHA256_Pad(ctx);
|
|
|
|
/* Write the hash */
|
|
be32enc_vect(digest, ctx->state, SHA256_DIGEST_LENGTH);
|
|
|
|
/* Clear the context state */
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
}
|
|
|
|
static void *hash_buf(FILE *f, int *len)
|
|
{
|
|
static char buf[1024];
|
|
|
|
*len = fread(buf, 1, sizeof(buf), f);
|
|
|
|
return *len > 0 ? buf : NULL;
|
|
}
|
|
|
|
static char *hash_string(unsigned char *buf, int len)
|
|
{
|
|
static char str[SHA256_DIGEST_LENGTH * 2 + 1];
|
|
int i;
|
|
|
|
if (len * 2 + 1 > sizeof(str))
|
|
return NULL;
|
|
|
|
for (i = 0; i < len; i++)
|
|
sprintf(&str[i * 2], "%02x", buf[i]);
|
|
|
|
return str;
|
|
}
|
|
|
|
static const char *md5_hash(FILE *f)
|
|
{
|
|
MD5_CTX ctx;
|
|
unsigned char val[MD5_DIGEST_LENGTH];
|
|
void *buf;
|
|
int len;
|
|
|
|
MD5_begin(&ctx);
|
|
while ((buf = hash_buf(f, &len)) != NULL)
|
|
MD5_hash(buf, len, &ctx);
|
|
MD5_end(val, &ctx);
|
|
|
|
return hash_string(val, MD5_DIGEST_LENGTH);
|
|
}
|
|
|
|
static const char *sha256_hash(FILE *f)
|
|
{
|
|
SHA256_CTX ctx;
|
|
unsigned char val[SHA256_DIGEST_LENGTH];
|
|
void *buf;
|
|
int len;
|
|
|
|
SHA256_Init(&ctx);
|
|
while ((buf = hash_buf(f, &len)) != NULL)
|
|
SHA256_Update(&ctx, buf, len);
|
|
SHA256_Final(val, &ctx);
|
|
|
|
return hash_string(val, SHA256_DIGEST_LENGTH);
|
|
}
|
|
|
|
|
|
struct hash_type {
|
|
const char *name;
|
|
const char *(*func)(FILE *f);
|
|
int len;
|
|
};
|
|
|
|
struct hash_type types[] = {
|
|
{ "md5", md5_hash, MD5_DIGEST_LENGTH },
|
|
{ "sha256", sha256_hash, SHA256_DIGEST_LENGTH },
|
|
};
|
|
|
|
|
|
static int usage(const char *progname)
|
|
{
|
|
int i;
|
|
|
|
fprintf(stderr, "Usage: %s <hash type> [options] [<file>...]\n"
|
|
"Options:\n"
|
|
" -n Print filename(s)\n"
|
|
" -N Suppress trailing newline\n"
|
|
"\n"
|
|
"Supported hash types:", progname);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(types); i++)
|
|
fprintf(stderr, "%s %s", i ? "," : "", types[i].name);
|
|
|
|
fprintf(stderr, "\n");
|
|
return 1;
|
|
}
|
|
|
|
static struct hash_type *get_hash_type(const char *name)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(types); i++) {
|
|
struct hash_type *t = &types[i];
|
|
|
|
if (!strcmp(t->name, name))
|
|
return t;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static int hash_file(struct hash_type *t, const char *filename, bool add_filename,
|
|
bool no_newline)
|
|
{
|
|
const char *str;
|
|
|
|
if (!filename || !strcmp(filename, "-")) {
|
|
str = t->func(stdin);
|
|
} else {
|
|
struct stat path_stat;
|
|
stat(filename, &path_stat);
|
|
if (S_ISDIR(path_stat.st_mode)) {
|
|
fprintf(stderr, "Failed to open '%s': Is a directory\n", filename);
|
|
return 1;
|
|
}
|
|
|
|
FILE *f = fopen(filename, "r");
|
|
|
|
if (!f) {
|
|
fprintf(stderr, "Failed to open '%s'\n", filename);
|
|
return 1;
|
|
}
|
|
str = t->func(f);
|
|
fclose(f);
|
|
}
|
|
|
|
if (!str) {
|
|
fprintf(stderr, "Failed to generate hash\n");
|
|
return 1;
|
|
}
|
|
|
|
if (add_filename)
|
|
printf("%s %s%s", str, filename ? filename : "-",
|
|
no_newline ? "" : "\n");
|
|
else
|
|
printf("%s%s", str, no_newline ? "" : "\n");
|
|
return 0;
|
|
}
|
|
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
struct hash_type *t;
|
|
const char *progname = argv[0];
|
|
int i, ch;
|
|
bool add_filename = false, no_newline = false;
|
|
|
|
while ((ch = getopt(argc, argv, "nN")) != -1) {
|
|
switch (ch) {
|
|
case 'n':
|
|
add_filename = true;
|
|
break;
|
|
case 'N':
|
|
no_newline = true;
|
|
break;
|
|
default:
|
|
return usage(progname);
|
|
}
|
|
}
|
|
|
|
argc -= optind;
|
|
argv += optind;
|
|
|
|
if (argc < 1)
|
|
return usage(progname);
|
|
|
|
t = get_hash_type(argv[0]);
|
|
if (!t)
|
|
return usage(progname);
|
|
|
|
if (argc < 2)
|
|
return hash_file(t, NULL, add_filename, no_newline);
|
|
|
|
for (i = 0; i < argc - 1; i++) {
|
|
int ret = hash_file(t, argv[1 + i], add_filename, no_newline);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|