4a55ef639d
FCC ID: A8J-ECB600 Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port, dual-band wireless, external ethernet switch, and 4 external antennas. Specification: - AR9344 SOC (5 GHz, 2x2, WMAC) - AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board) - AR8035-A switch (GbE with 802.3af PoE) - 40 MHz reference clock - 16 MB FLASH MX25L12845EMI-10G - 2x 64 MB RAM NT5TU32M16DG - UART at H1 (populated) - 4 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz) (reset) - 4 external antennas MAC addresses: MAC addresses are labeled MAC1 and MAC2 The MAC address in flash is not on the label The OEM software reports these MACs for the ifconfig phy1 MAC 1 *:52 --- (2.4 GHz) phy0 MAC 2 *:53 --- (5 GHz) eth0 ----- *:54 art 0x0 Installation: 2 ways to flash factory.bin from OEM: - if you get Failsafe Mode from failed flash: only use it to flash Original firmware from Engenius or risk kernel loop or halt which requires serial cable Method 1: Firmware upgrade page: OEM webpage at 192.168.1.1 username and password "admin" Navigate to "Upgrade Firmware" page from left pane Click Browse and select the factory.bin image Upload and verify checksum Click Continue to confirm and wait 3 minutes Method 2: Serial to load Failsafe webpage: After connecting to serial console and rebooting... Interrupt uboot with any key pressed rapidly execute `run failsafe_boot` OR `bootm 0x9fdf0000` wait a minute connect to ethernet and navigate to "192.168.1.1/index.htm" Select the factory.bin image and upload wait about 3 minutes Return to OEM: If you have a serial cable, see Serial Failsafe instructions otherwise, uboot-env can be used to make uboot load the failsafe image *DISCLAIMER* The Failsafe image is unique to Engenius boards. If the failsafe image is missing or damaged this will not work DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt ssh into openwrt and run `fw_setenv rootfs_checksum 0` reboot, wait 3 minutes connect to ethernet and navigate to 192.168.1.1/index.htm select OEM firmware image from Engenius and click upgrade Format of OEM firmware image: The OEM software of ECB600 is a heavily modified version of Openwrt Kamikaze. One of the many modifications is to the sysupgrade program. Image verification is performed simply by the successful ungzip and untar of the supplied file and name check and header verification of the resulting contents. To form a factory.bin that is accepted by OEM Openwrt build, the kernel and rootfs must have specific names... openwrt-senao-ecb600-uImage-lzma.bin openwrt-senao-ecb600-root.squashfs and begin with the respective headers (uImage, squashfs). Then the files must be tarballed and gzipped. The resulting binary is actually a tar.gz file in disguise. This can be verified by using binwalk on the OEM firmware images, ungzipping then untaring. The OEM upgrade script is at /etc/fwupgrade.sh Later models in the ECB series likely have a different platform and the upgrade and image verification process differs. OKLI kernel loader is required because the OEM software expects the kernel to be no greater than 1536k and the factory.bin upgrade procedure would overwrite part of the kernel when writing rootfs. Note on PLL-data cells: The default PLL register values will not work because of the external AR8035-A switch between the SOC and the ethernet PHY chips. For AR934x series, the PLL register for GMAC0 can be seen in the DTSI as 0x2c. Therefore the PLL register can be read from uboot for each link speed after attempting tftpboot or another network action using that link speed with `md 0x1805002c 1`. Unfortunately uboot did not have the best values so they were taken from other similar DTS files. Tested from master, all link speeds functional Signed-off-by: Michael Pratt <mcpratt@pm.me> |
||
---|---|---|
.github | ||
config | ||
include | ||
package | ||
scripts | ||
target | ||
toolchain | ||
tools | ||
.gitattributes | ||
.gitignore | ||
BSDmakefile | ||
Config.in | ||
feeds.conf.default | ||
LICENSE | ||
Makefile | ||
README.md | ||
rules.mk |
OpenWrt Project is a Linux operating system targeting embedded devices. Instead of trying to create a single, static firmware, OpenWrt provides a fully writable filesystem with package management. This frees you from the application selection and configuration provided by the vendor and allows you to customize the device through the use of packages to suit any application. For developers, OpenWrt is the framework to build an application without having to build a complete firmware around it; for users this means the ability for full customization, to use the device in ways never envisioned.
Sunshine!
Development
To build your own firmware you need a GNU/Linux, BSD or MacOSX system (case sensitive filesystem required). Cygwin is unsupported because of the lack of a case sensitive file system.
Requirements
You need the following tools to compile OpenWrt, the package names vary between distributions. A complete list with distribution specific packages is found in the Build System Setup documentation.
gcc binutils bzip2 flex python3 perl make find grep diff unzip gawk getopt
subversion libz-dev libc-dev rsync
Quickstart
-
Run
./scripts/feeds update -a
to obtain all the latest package definitions defined in feeds.conf / feeds.conf.default -
Run
./scripts/feeds install -a
to install symlinks for all obtained packages into package/feeds/ -
Run
make menuconfig
to select your preferred configuration for the toolchain, target system & firmware packages. -
Run
make
to build your firmware. This will download all sources, build the cross-compile toolchain and then cross-compile the GNU/Linux kernel & all chosen applications for your target system.
Related Repositories
The main repository uses multiple sub-repositories to manage packages of
different categories. All packages are installed via the OpenWrt package
manager called opkg
. If you're looking to develop the web interface or port
packages to OpenWrt, please find the fitting repository below.
-
LuCI Web Interface: Modern and modular interface to control the device via a web browser.
-
OpenWrt Packages: Community repository of ported packages.
-
OpenWrt Routing: Packages specifically focused on (mesh) routing.
Support Information
For a list of supported devices see the OpenWrt Hardware Database
Documentation
Support Community
- Forum: For usage, projects, discussions and hardware advise.
- Support Chat: Channel
#openwrt
on freenode.net.
Developer Community
- Bug Reports: Report bugs in OpenWrt
- Dev Mailing List: Send patches
- Dev Chat: Channel
#openwrt-devel
on freenode.net.
License
OpenWrt is licensed under GPL-2.0