realtek: Add SoC-specific routing offload implementation

Adds SoC specific routing offload implementations for
RTL8380/90 and RTL9300. RTL83xx supports merely nexthop
routing, RTL9300 full host and prefix routes.

Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
This commit is contained in:
Birger Koblitz 2021-09-10 15:06:24 +02:00 committed by John Crispin
parent 03e1d93e07
commit 1f402512ae
4 changed files with 938 additions and 165 deletions

View File

@ -1,6 +1,8 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include <net/nexthop.h>
#include "rtl83xx.h"
extern struct mutex smi_lock;
@ -290,9 +292,10 @@ static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
e->suspended = !!(r[1] & BIT(29));
e->next_hop = !!(r[1] & BIT(28));
if (e->next_hop) {
pr_info("Found next hop entry, need to read extra data\n");
pr_debug("Found next hop entry, need to read extra data\n");
e->nh_vlan_target = !!(r[0] & BIT(9));
e->nh_route_id = r[0] & 0x1ff;
e->vid = e->rvid;
}
e->age = (r[0] >> 17) & 0x3;
e->valid = true;
@ -304,7 +307,7 @@ static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
else
e->type = L2_UNICAST;
} else { // L2 multicast
pr_info("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
pr_debug("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
e->valid = true;
e->type = L2_MULTICAST;
e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
@ -312,9 +315,8 @@ static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
} else { // IPv4 and IPv6 multicast
e->valid = true;
e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
e->mc_gip = r[1];
e->mc_sip = r[2];
e->rvid = r[0] & 0xfff;
e->mc_gip = (r[1] << 20) | (r[2] >> 12);
e->rvid = r[2] & 0xfff;
}
if (e->is_ip_mc)
e->type = IP4_MULTICAST;
@ -353,19 +355,20 @@ static void rtl838x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
if (e->next_hop) {
r[1] |= BIT(28);
r[0] |= e->nh_vlan_target ? BIT(9) : 0;
r[0] |= e->nh_route_id &0x1ff;
r[0] |= e->nh_route_id & 0x1ff;
}
r[0] |= (e->age & 0x3) << 17;
} else { // L2 Multicast
r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
r[2] |= e->rvid & 0xfff;
r[0] |= e->vid & 0xfff;
pr_info("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
pr_debug("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
}
} else { // IPv4 and IPv6 multicast
r[1] = e->mc_gip;
r[2] = e->mc_sip;
r[0] |= e->rvid;
r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
r[1] = e->mc_gip >> 20;
r[2] = e->mc_gip << 12;
r[2] |= e->rvid;
}
}
@ -392,7 +395,7 @@ static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2
if (!e->valid)
return 0;
entry = (((u64) r[1]) << 32) | (r[2] & 0xfffff000) | (r[0] & 0xfff);
entry = (((u64) r[1]) << 32) | (r[2]); // mac and vid concatenated as hash seed
return entry;
}
@ -433,7 +436,7 @@ static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
// Return MAC with concatenated VID ac concatenated ID
entry = (((u64) r[1]) << 32) | (r[2] & 0xfffff000) | (r[0] & 0xfff);
entry = (((u64) r[1]) << 32) | r[2];
return entry;
}
@ -509,16 +512,6 @@ static void rtl838x_l2_learning_setup(void)
sw_w32(0, RTL838X_SPCL_TRAP_ARP_CTRL);
}
static inline int rtl838x_vlan_port_egr_filter(int port)
{
return RTL838X_VLAN_PORT_EGR_FLTR;
}
static inline int rtl838x_vlan_port_igr_filter(int port)
{
return RTL838X_VLAN_PORT_IGR_FLTR(port);
}
static void rtl838x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
int i;
@ -1553,6 +1546,41 @@ static void rtl838x_packet_cntr_clear(int counter)
rtl_table_release(r);
}
static void rtl838x_route_read(int idx, struct rtl83xx_route *rt)
{
// Read ROUTING table (2) via register RTL8380_TBL_1
struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
pr_debug("In %s, id %d\n", __func__, idx);
rtl_table_read(r, idx);
// The table has a size of 2 registers
rt->nh.gw = sw_r32(rtl_table_data(r, 0));
rt->nh.gw <<= 32;
rt->nh.gw |= sw_r32(rtl_table_data(r, 1));
rtl_table_release(r);
}
static void rtl838x_route_write(int idx, struct rtl83xx_route *rt)
{
// Access ROUTING table (2) via register RTL8380_TBL_1
struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
pr_debug("In %s, id %d, gw: %016llx\n", __func__, idx, rt->nh.gw);
sw_w32(rt->nh.gw >> 32, rtl_table_data(r, 0));
sw_w32(rt->nh.gw, rtl_table_data(r, 1));
rtl_table_write(r, idx);
rtl_table_release(r);
}
static int rtl838x_l3_setup(struct rtl838x_switch_priv *priv)
{
// Nothing to be done
return 0;
}
const struct rtl838x_reg rtl838x_reg = {
.mask_port_reg_be = rtl838x_mask_port_reg,
.set_port_reg_be = rtl838x_set_port_reg,
@ -1605,7 +1633,7 @@ const struct rtl838x_reg rtl838x_reg = {
.read_cam = rtl838x_read_cam,
.write_cam = rtl838x_write_cam,
.vlan_port_egr_filter = RTL838X_VLAN_PORT_EGR_FLTR,
.vlan_port_igr_filter = RTL838X_VLAN_PORT_IGR_FLTR(0),
.vlan_port_igr_filter = RTL838X_VLAN_PORT_IGR_FLTR,
.vlan_port_pb = RTL838X_VLAN_PORT_PB_VLAN,
.vlan_port_tag_sts_ctrl = RTL838X_VLAN_PORT_TAG_STS_CTRL,
.trk_mbr_ctr = rtl838x_trk_mbr_ctr,
@ -1626,6 +1654,9 @@ const struct rtl838x_reg rtl838x_reg = {
.l2_learning_setup = rtl838x_l2_learning_setup,
.packet_cntr_read = rtl838x_packet_cntr_read,
.packet_cntr_clear = rtl838x_packet_cntr_clear,
.route_read = rtl838x_route_read,
.route_write = rtl838x_route_write,
.l3_setup = rtl838x_l3_setup,
};
irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)

View File

@ -300,7 +300,7 @@ static void rtl839x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
e->is_ip_mc = !!(r[2] & BIT(31));
e->is_ipv6_mc = !!(r[2] & BIT(30));
e->type = L2_INVALID;
if (!e->is_ip_mc) {
if (!e->is_ip_mc && !e->is_ipv6_mc) {
e->mac[0] = (r[0] >> 12);
e->mac[1] = (r[0] >> 4);
e->mac[2] = ((r[1] >> 28) | (r[0] << 4));
@ -308,18 +308,23 @@ static void rtl839x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
e->mac[4] = (r[1] >> 12);
e->mac[5] = (r[1] >> 4);
e->vid = (r[2] >> 4) & 0xfff;
e->rvid = (r[0] >> 20) & 0xfff;
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
e->is_static = !!((r[2] >> 18) & 1);
e->vid = (r[2] >> 4) & 0xfff;
e->rvid = (r[0] >> 20) & 0xfff;
e->port = (r[2] >> 24) & 0x3f;
e->block_da = !!(r[2] & (1 << 19));
e->block_sa = !!(r[2] & (1 << 20));
e->suspended = !!(r[2] & (1 << 17));
e->next_hop = !!(r[2] & (1 << 16));
if (e->next_hop)
pr_info("Found next hop entry, need to read data\n");
if (e->next_hop) {
pr_debug("Found next hop entry, need to read data\n");
e->nh_vlan_target = !!(r[2] & BIT(15));
e->nh_route_id = (r[2] >> 4) & 0x1ff;
e->vid = e->rvid;
}
e->age = (r[2] >> 21) & 3;
e->valid = true;
if (!(r[2] & 0xc0fd0000)) /* Check for valid entry */
@ -329,8 +334,13 @@ static void rtl839x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
} else {
e->valid = true;
e->type = L2_MULTICAST;
e->mc_portmask_index = (r[2]>>6) & 0xfff;
e->mc_portmask_index = (r[2] >> 6) & 0xfff;
e->vid = e->rvid;
}
} else { // IPv4 and IPv6 multicast
e->vid = e->rvid = (r[0] << 20) & 0xfff;
e->mc_gip = r[1];
e->mc_portmask_index = (r[2] >> 6) & 0xfff;
}
if (e->is_ip_mc) {
e->valid = true;
@ -340,10 +350,11 @@ static void rtl839x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
e->valid = true;
e->type = IP6_MULTICAST;
}
// pr_info("%s: vid %d, rvid: %d\n", __func__, e->vid, e->rvid);
}
/*
* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
* Fills the 3 SoC table registers r[] with the information in the rtl838x_l2_entry
*/
static void rtl839x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
{
@ -366,27 +377,28 @@ static void rtl839x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
if (!(e->mac[0] & 1)) { // Not multicast
r[2] |= e->is_static ? BIT(18) : 0;
r[2] |= e->vid << 4;
r[0] |= ((u32)e->rvid) << 20;
r[2] |= e->port << 24;
r[2] |= e->block_da ? BIT(19) : 0;
r[2] |= e->block_sa ? BIT(20) : 0;
r[2] |= e->suspended ? BIT(17) : 0;
r[2] |= ((u32)e->age) << 21;
if (e->next_hop) {
r[2] |= BIT(16);
r[2] |= e->nh_vlan_target ? BIT(15) : 0;
r[2] |= (e->nh_route_id & 0x7ff) << 4;
} else {
r[2] |= e->vid << 4;
}
r[2] |= ((u32)e->age) << 21;
pr_debug("Write L2 NH: %08x %08x %08x\n", r[0], r[1], r[2]);
} else { // L2 Multicast
r[0] |= ((u32)e->rvid) << 20;
r[2] |= ((u32)e->mc_portmask_index) << 6;
pr_debug("Write L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
}
} else { // IPv4 or IPv6 MC entry
r[0] = ((u32)e->rvid) << 20;
r[2] |= ((u32)e->mc_portmask_index) << 6;
r[1] = e->mc_gip;
r[2] |= ((u32)e->mc_portmask_index) << 6;
}
}
@ -512,16 +524,6 @@ static void rtl839x_vlan_profile_setup(int profile)
rtl839x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x001fffffffffffff);
}
static inline int rtl839x_vlan_port_egr_filter(int port)
{
return RTL839X_VLAN_PORT_EGR_FLTR(port);
}
static inline int rtl839x_vlan_port_igr_filter(int port)
{
return RTL839X_VLAN_PORT_IGR_FLTR(port);
}
u64 rtl839x_traffic_get(int source)
{
return rtl839x_get_port_reg_be(rtl839x_port_iso_ctrl(source));
@ -1621,6 +1623,69 @@ static void rtl839x_packet_cntr_clear(int counter)
rtl_table_release(r);
}
static void rtl839x_route_read(int idx, struct rtl83xx_route *rt)
{
u64 v;
// Read ROUTING table (2) via register RTL8390_TBL_1
struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 2);
pr_debug("In %s\n", __func__);
rtl_table_read(r, idx);
// The table has a size of 2 registers
v = sw_r32(rtl_table_data(r, 0));
v <<= 32;
v |= sw_r32(rtl_table_data(r, 1));
rt->switch_mac_id = (v >> 12) & 0xf;
rt->nh.gw = v >> 16;
rtl_table_release(r);
}
static void rtl839x_route_write(int idx, struct rtl83xx_route *rt)
{
u32 v;
// Read ROUTING table (2) via register RTL8390_TBL_1
struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 2);
pr_debug("In %s\n", __func__);
sw_w32(rt->nh.gw >> 16, rtl_table_data(r, 0));
v = rt->nh.gw << 16;
v |= rt->switch_mac_id << 12;
sw_w32(v, rtl_table_data(r, 1));
rtl_table_write(r, idx);
rtl_table_release(r);
}
/*
* Configure the switch's own MAC addresses used when routing packets
*/
static void rtl839x_setup_port_macs(struct rtl838x_switch_priv *priv)
{
int i;
struct net_device *dev;
u64 mac;
pr_debug("%s: got port %08x\n", __func__, (u32)priv->ports[priv->cpu_port].dp);
dev = priv->ports[priv->cpu_port].dp->slave;
mac = ether_addr_to_u64(dev->dev_addr);
for (i = 0; i < 15; i++) {
mac++; // BUG: VRRP for testing
sw_w32(mac >> 32, RTL839X_ROUTING_SA_CTRL + i * 8);
sw_w32(mac, RTL839X_ROUTING_SA_CTRL + i * 8 + 4);
}
}
int rtl839x_l3_setup(struct rtl838x_switch_priv *priv)
{
rtl839x_setup_port_macs(priv);
return 0;
}
const struct rtl838x_reg rtl839x_reg = {
.mask_port_reg_be = rtl839x_mask_port_reg_be,
.set_port_reg_be = rtl839x_set_port_reg_be,
@ -1672,8 +1737,8 @@ const struct rtl838x_reg rtl839x_reg = {
.write_l2_entry_using_hash = rtl839x_write_l2_entry_using_hash,
.read_cam = rtl839x_read_cam,
.write_cam = rtl839x_write_cam,
.vlan_port_egr_filter = RTL839X_VLAN_PORT_EGR_FLTR(0),
.vlan_port_igr_filter = RTL839X_VLAN_PORT_IGR_FLTR(0),
.vlan_port_egr_filter = RTL839X_VLAN_PORT_EGR_FLTR,
.vlan_port_igr_filter = RTL839X_VLAN_PORT_IGR_FLTR,
.vlan_port_pb = RTL839X_VLAN_PORT_PB_VLAN,
.vlan_port_tag_sts_ctrl = RTL839X_VLAN_PORT_TAG_STS_CTRL,
.trk_mbr_ctr = rtl839x_trk_mbr_ctr,
@ -1694,4 +1759,7 @@ const struct rtl838x_reg rtl839x_reg = {
.l2_learning_setup = rtl839x_l2_learning_setup,
.packet_cntr_read = rtl839x_packet_cntr_read,
.packet_cntr_clear = rtl839x_packet_cntr_clear,
.route_read = rtl839x_route_read,
.route_write = rtl839x_route_write,
.l3_setup = rtl839x_l3_setup,
};

View File

@ -1,6 +1,8 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include <linux/inetdevice.h>
#include "rtl83xx.h"
extern struct mutex smi_lock;
@ -412,7 +414,7 @@ static void rtl930x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
e->valid = true;
// the UC_VID field in hardware is used for the VID or for the route id
if (e->next_hop) {
e->nh_route_id = r[2] & 0xfff;
e->nh_route_id = r[2] & 0x7ff;
e->vid = 0;
} else {
e->vid = r[2] & 0xfff;
@ -463,7 +465,7 @@ static void rtl930x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
r[2] |= (e->age & 0x3) << 17;
// the UC_VID field in hardware is used for the VID or for the route id
if (e->next_hop)
r[2] |= e->nh_route_id & 0xfff;
r[2] |= e->nh_route_id & 0x7ff;
else
r[2] |= e->vid & 0xfff;
} else { // L2_MULTICAST
@ -529,8 +531,8 @@ static void rtl930x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_
u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
int i;
pr_info("%s: hash %d, pos %d\n", __func__, hash, pos);
pr_info("%s: index %d -> mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, idx,
pr_debug("%s: hash %d, pos %d\n", __func__, hash, pos);
pr_debug("%s: index %d -> mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, idx,
e->mac[0], e->mac[1], e->mac[2], e->mac[3],e->mac[4],e->mac[5]);
rtl930x_fill_l2_row(r, e);
@ -593,80 +595,6 @@ static void dump_l2_entry(struct rtl838x_l2_entry *e)
e->stack_dev, e->nh_route_id, e->port);
}
/*
* Add an L2 nexthop entry for the L3 routing system in the SoC
* Use VID and MAC in rtl838x_l2_entry to identify either a free slot in the L2 hash table
* or mark an existing entry as a nexthop by setting it's nexthop bit
* Called from the L3 layer
* The index in the L2 hash table is filled into nh->l2_id;
*/
static int rtl930x_l2_nexthop_add(struct rtl838x_switch_priv *priv, struct rtl838x_nexthop *nh)
{
struct rtl838x_l2_entry e;
u64 seed = rtl930x_l2_hash_seed(nh->mac, nh->vid);
u32 key = rtl930x_l2_hash_key(priv, seed);
int i, idx = -1;
u64 entry;
pr_info("%s searching for %08llx vid %d with key %d, seed: %016llx\n",
__func__, nh->mac, nh->vid, key, seed);
e.type = L2_UNICAST;
e.rvid = nh->fid; // Verify its the forwarding ID!!! l2_entry.un.unicast.fid
u64_to_ether_addr(nh->mac, &e.mac[0]);
e.port = RTL930X_PORT_IGNORE;
// Loop over all entries in the hash-bucket and over the second block on 93xx SoCs
for (i = 0; i < priv->l2_bucket_size; i++) {
entry = rtl930x_read_l2_entry_using_hash(key, i, &e);
pr_info("%s i: %d, entry %016llx, seed %016llx\n", __func__, i, entry, seed);
if (e.valid && e.next_hop)
continue;
if (!e.valid || ((entry & 0x0fffffffffffffffULL) == seed)) {
idx = i > 3 ? ((key >> 14) & 0xffff) | i >> 1
: ((key << 2) | i) & 0xffff;
break;
}
}
pr_info("%s: found idx %d and i %d\n", __func__, idx, i);
if (idx < 0) {
pr_err("%s: No more L2 forwarding entries available\n", __func__);
return -1;
}
// Found an existing or empty entry, make it a nexthop entry
pr_info("%s BEFORE -> key %d, pos: %d, index: %d\n", __func__, key, i, idx);
dump_l2_entry(&e);
nh->l2_id = idx;
// Found an existing (e->valid is true) or empty entry, make it a nexthop entry
if (e.valid) {
nh->port = e.port;
nh->fid = e.rvid;
nh->vid = e.vid;
nh->dev_id = e.stack_dev;
} else {
e.valid = true;
e.is_static = false;
e.vid = nh->vid;
e.rvid = nh->fid;
e.port = RTL930X_PORT_IGNORE;
u64_to_ether_addr(nh->mac, &e.mac[0]);
}
e.next_hop = true;
// For nexthop entries, the vid field in the table is used to denote the dest mac_id
e.nh_route_id = nh->mac_id;
pr_info("%s AFTER\n", __func__);
dump_l2_entry(&e);
rtl930x_write_l2_entry_using_hash(idx >> 2, idx & 0x3, &e);
// _dal_longan_l2_nexthop_add
return 0;
}
static u64 rtl930x_read_mcast_pmask(int idx)
{
u32 portmask;
@ -767,9 +695,6 @@ irqreturn_t rtl930x_switch_irq(int irq, void *dev_id)
/* Clear status */
sw_w32(ports, RTL930X_ISR_PORT_LINK_STS_CHG);
pr_info("RTL9300 Link change: status: %x, ports %x\n", status, ports);
rtl9300_dump_debug();
for (i = 0; i < 28; i++) {
if (ports & BIT(i)) {
@ -787,41 +712,6 @@ irqreturn_t rtl930x_switch_irq(int irq, void *dev_id)
return IRQ_HANDLED;
}
int rtl9300_sds_power(int mac, int val)
{
int sds_num;
u32 mode;
// TODO: these numbers are hard-coded for the Zyxel XGS1210 12 Switch
pr_info("SerDes: %s %d\n", __func__, mac);
switch (mac) {
case 24:
sds_num = 6;
mode = 0x12; // HISGMII
break;
case 25:
sds_num = 7;
mode = 0x12; // HISGMII
break;
case 26:
sds_num = 8;
mode = 0x1b; // 10GR/1000BX auto
break;
case 27:
sds_num = 9;
mode = 0x1b; // 10GR/1000BX auto
break;
default:
return -1;
}
if (!val)
mode = 0x1f; // OFF
rtl9300_sds_rst(sds_num, mode);
return 0;
}
int rtl930x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
u32 v;
@ -1077,6 +967,562 @@ static void rtl930x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
priv->eee_enabled = enable;
}
#define HASH_PICK(val, lsb, len) ((val & (((1 << len) - 1) << lsb)) >> lsb)
static u32 rtl930x_l3_hash4(u32 ip, int algorithm, bool move_dip)
{
u32 rows[4];
u32 hash;
u32 s0, s1, pH;
memset(rows, 0, sizeof(rows));
rows[0] = HASH_PICK(ip, 27, 5);
rows[1] = HASH_PICK(ip, 18, 9);
rows[2] = HASH_PICK(ip, 9, 9);
if (!move_dip)
rows[3] = HASH_PICK(ip, 0, 9);
if (!algorithm) {
hash = rows[0] ^ rows[1] ^ rows[2] ^ rows[3];
} else {
s0 = rows[0] + rows[1] + rows[2];
s1 = (s0 & 0x1ff) + ((s0 & (0x1ff << 9)) >> 9);
pH = (s1 & 0x1ff) + ((s1 & (0x1ff << 9)) >> 9);
hash = pH ^ rows[3];
}
return hash;
}
static u32 rtl930x_l3_hash6(struct in6_addr *ip6, int algorithm, bool move_dip)
{
u32 rows[16];
u32 hash;
u32 s0, s1, pH;
rows[0] = (HASH_PICK(ip6->s6_addr[0], 6, 2) << 0);
rows[1] = (HASH_PICK(ip6->s6_addr[0], 0, 6) << 3) | HASH_PICK(ip6->s6_addr[1], 5, 3);
rows[2] = (HASH_PICK(ip6->s6_addr[1], 0, 5) << 4) | HASH_PICK(ip6->s6_addr[2], 4, 4);
rows[3] = (HASH_PICK(ip6->s6_addr[2], 0, 4) << 5) | HASH_PICK(ip6->s6_addr[3], 3, 5);
rows[4] = (HASH_PICK(ip6->s6_addr[3], 0, 3) << 6) | HASH_PICK(ip6->s6_addr[4], 2, 6);
rows[5] = (HASH_PICK(ip6->s6_addr[4], 0, 2) << 7) | HASH_PICK(ip6->s6_addr[5], 1, 7);
rows[6] = (HASH_PICK(ip6->s6_addr[5], 0, 1) << 8) | HASH_PICK(ip6->s6_addr[6], 0, 8);
rows[7] = (HASH_PICK(ip6->s6_addr[7], 0, 8) << 1) | HASH_PICK(ip6->s6_addr[8], 7, 1);
rows[8] = (HASH_PICK(ip6->s6_addr[8], 0, 7) << 2) | HASH_PICK(ip6->s6_addr[9], 6, 2);
rows[9] = (HASH_PICK(ip6->s6_addr[9], 0, 6) << 3) | HASH_PICK(ip6->s6_addr[10], 5, 3);
rows[10] = (HASH_PICK(ip6->s6_addr[10], 0, 5) << 4) | HASH_PICK(ip6->s6_addr[11], 4, 4);
if (!algorithm) {
rows[11] = (HASH_PICK(ip6->s6_addr[11], 0, 4) << 5)
| (HASH_PICK(ip6->s6_addr[12], 3, 5) << 0);
rows[12] = (HASH_PICK(ip6->s6_addr[12], 0, 3) << 6)
| (HASH_PICK(ip6->s6_addr[13], 2, 6) << 0);
rows[13] = (HASH_PICK(ip6->s6_addr[13], 0, 2) << 7)
| (HASH_PICK(ip6->s6_addr[14], 1, 7) << 0);
if (!move_dip) {
rows[14] = (HASH_PICK(ip6->s6_addr[14], 0, 1) << 8)
| (HASH_PICK(ip6->s6_addr[15], 0, 8) << 0);
}
hash = rows[0] ^ rows[1] ^ rows[2] ^ rows[3] ^ rows[4] ^ rows[5] ^ rows[6]
^ rows[7] ^ rows[8] ^ rows[9] ^ rows[10] ^ rows[11] ^ rows[12]
^ rows[13] ^ rows[14];
} else {
rows[11] = (HASH_PICK(ip6->s6_addr[11], 0, 4) << 5);
rows[12] = (HASH_PICK(ip6->s6_addr[12], 3, 5) << 0);
rows[13] = (HASH_PICK(ip6->s6_addr[12], 0, 3) << 6)
| HASH_PICK(ip6->s6_addr[13], 2, 6);
rows[14] = (HASH_PICK(ip6->s6_addr[13], 0, 2) << 7)
| HASH_PICK(ip6->s6_addr[14], 1, 7);
if (!move_dip) {
rows[15] = (HASH_PICK(ip6->s6_addr[14], 0, 1) << 8)
| (HASH_PICK(ip6->s6_addr[15], 0, 8) << 0);
}
s0 = rows[12] + rows[13] + rows[14];
s1 = (s0 & 0x1ff) + ((s0 & (0x1ff << 9)) >> 9);
pH = (s1 & 0x1ff) + ((s1 & (0x1ff << 9)) >> 9);
hash = rows[0] ^ rows[1] ^ rows[2] ^ rows[3] ^ rows[4] ^ rows[5] ^ rows[6]
^ rows[7] ^ rows[8] ^ rows[9] ^ rows[10] ^ rows[11] ^ pH ^ rows[15];
}
return hash;
}
/*
* Read a prefix route entry from the L3_PREFIX_ROUTE_IPUC table
* We currently only support IPv4 and IPv6 unicast route
*/
static void rtl930x_route_read(int idx, struct rtl83xx_route *rt)
{
u32 v, ip4_m;
bool host_route, default_route;
struct in6_addr ip6_m;
// Read L3_PREFIX_ROUTE_IPUC table (2) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 2);
rtl_table_read(r, idx);
// The table has a size of 11 registers
rt->attr.valid = !!(sw_r32(rtl_table_data(r, 0)) & BIT(31));
if (!rt->attr.valid)
goto out;
rt->attr.type = (sw_r32(rtl_table_data(r, 0)) >> 29) & 0x3;
v = sw_r32(rtl_table_data(r, 10));
host_route = !!(v & BIT(21));
default_route = !!(v & BIT(20));
rt->prefix_len = -1;
pr_info("%s: host route %d, default_route %d\n", __func__, host_route, default_route);
switch (rt->attr.type) {
case 0: // IPv4 Unicast route
rt->dst_ip = sw_r32(rtl_table_data(r, 4));
ip4_m = sw_r32(rtl_table_data(r, 9));
pr_info("%s: Read ip4 mask: %08x\n", __func__, ip4_m);
rt->prefix_len = host_route ? 32 : -1;
rt->prefix_len = (rt->prefix_len < 0 && default_route) ? 0 : -1;
if (rt->prefix_len < 0)
rt->prefix_len = inet_mask_len(ip4_m);
break;
case 2: // IPv6 Unicast route
ipv6_addr_set(&rt->dst_ip6,
sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 2)),
sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 4)));
ipv6_addr_set(&ip6_m,
sw_r32(rtl_table_data(r, 6)), sw_r32(rtl_table_data(r, 7)),
sw_r32(rtl_table_data(r, 8)), sw_r32(rtl_table_data(r, 9)));
rt->prefix_len = host_route ? 128 : 0;
rt->prefix_len = (rt->prefix_len < 0 && default_route) ? 0 : -1;
if (rt->prefix_len < 0)
rt->prefix_len = find_last_bit((unsigned long int *)&ip6_m.s6_addr32,
128);
break;
case 1: // IPv4 Multicast route
case 3: // IPv6 Multicast route
pr_warn("%s: route type not supported\n", __func__);
goto out;
}
rt->attr.hit = !!(v & BIT(22));
rt->attr.action = (v >> 18) & 3;
rt->nh.id = (v >> 7) & 0x7ff;
rt->attr.ttl_dec = !!(v & BIT(6));
rt->attr.ttl_check = !!(v & BIT(5));
rt->attr.dst_null = !!(v & BIT(4));
rt->attr.qos_as = !!(v & BIT(3));
rt->attr.qos_prio = v & 0x7;
pr_info("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid);
pr_info("%s: next_hop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n",
__func__, rt->nh.id, rt->attr.hit, rt->attr.action,
rt->attr.ttl_dec, rt->attr.ttl_check, rt->attr.dst_null);
pr_info("%s: GW: %pI4, prefix_len: %d\n", __func__, &rt->dst_ip, rt->prefix_len);
out:
rtl_table_release(r);
}
static void rtl930x_net6_mask(int prefix_len, struct in6_addr *ip6_m)
{
int o, b;
// Define network mask
o = prefix_len >> 3;
b = prefix_len & 0x7;
memset(ip6_m->s6_addr, 0xff, o);
ip6_m->s6_addr[o] |= b ? 0xff00 >> b : 0x00;
}
/*
* Read a host route entry from the table using its index
* We currently only support IPv4 and IPv6 unicast route
*/
static void rtl930x_host_route_read(int idx, struct rtl83xx_route *rt)
{
u32 v;
// Read L3_HOST_ROUTE_IPUC table (1) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 1);
idx = ((idx / 6) * 8) + (idx % 6);
pr_debug("In %s, physical index %d\n", __func__, idx);
rtl_table_read(r, idx);
// The table has a size of 5 (for UC, 11 for MC) registers
v = sw_r32(rtl_table_data(r, 0));
rt->attr.valid = !!(v & BIT(31));
if (!rt->attr.valid)
goto out;
rt->attr.type = (v >> 29) & 0x3;
switch (rt->attr.type) {
case 0: // IPv4 Unicast route
rt->dst_ip = sw_r32(rtl_table_data(r, 4));
break;
case 2: // IPv6 Unicast route
ipv6_addr_set(&rt->dst_ip6,
sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 2)),
sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 0)));
break;
case 1: // IPv4 Multicast route
case 3: // IPv6 Multicast route
pr_warn("%s: route type not supported\n", __func__);
goto out;
}
rt->attr.hit = !!(v & BIT(20));
rt->attr.dst_null = !!(v & BIT(19));
rt->attr.action = (v >> 17) & 3;
rt->nh.id = (v >> 6) & 0x7ff;
rt->attr.ttl_dec = !!(v & BIT(5));
rt->attr.ttl_check = !!(v & BIT(4));
rt->attr.qos_as = !!(v & BIT(3));
rt->attr.qos_prio = v & 0x7;
pr_debug("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid);
pr_debug("%s: next_hop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n",
__func__, rt->nh.id, rt->attr.hit, rt->attr.action, rt->attr.ttl_dec, rt->attr.ttl_check,
rt->attr.dst_null);
pr_debug("%s: Destination: %pI4\n", __func__, &rt->dst_ip);
out:
rtl_table_release(r);
}
/*
* Write a host route entry from the table using its index
* We currently only support IPv4 and IPv6 unicast route
*/
static void rtl930x_host_route_write(int idx, struct rtl83xx_route *rt)
{
u32 v;
// Access L3_HOST_ROUTE_IPUC table (1) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 1);
// The table has a size of 5 (for UC, 11 for MC) registers
idx = ((idx / 6) * 8) + (idx % 6);
pr_debug("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid);
pr_debug("%s: next_hop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n",
__func__, rt->nh.id, rt->attr.hit, rt->attr.action, rt->attr.ttl_dec, rt->attr.ttl_check,
rt->attr.dst_null);
pr_debug("%s: GW: %pI4, prefix_len: %d\n", __func__, &rt->dst_ip, rt->prefix_len);
v = BIT(31); // Entry is valid
v |= (rt->attr.type & 0x3) << 29;
v |= rt->attr.hit ? BIT(20) : 0;
v |= rt->attr.dst_null ? BIT(19) : 0;
v |= (rt->attr.action & 0x3) << 17;
v |= (rt->nh.id & 0x7ff) << 6;
v |= rt->attr.ttl_dec ? BIT(5) : 0;
v |= rt->attr.ttl_check ? BIT(4) : 0;
v |= rt->attr.qos_as ? BIT(3) : 0;
v |= rt->attr.qos_prio & 0x7;
sw_w32(v, rtl_table_data(r, 0));
switch (rt->attr.type) {
case 0: // IPv4 Unicast route
sw_w32(0, rtl_table_data(r, 1));
sw_w32(0, rtl_table_data(r, 2));
sw_w32(0, rtl_table_data(r, 3));
sw_w32(rt->dst_ip, rtl_table_data(r, 4));
break;
case 2: // IPv6 Unicast route
sw_w32(rt->dst_ip6.s6_addr32[0], rtl_table_data(r, 1));
sw_w32(rt->dst_ip6.s6_addr32[1], rtl_table_data(r, 2));
sw_w32(rt->dst_ip6.s6_addr32[2], rtl_table_data(r, 3));
sw_w32(rt->dst_ip6.s6_addr32[3], rtl_table_data(r, 4));
break;
case 1: // IPv4 Multicast route
case 3: // IPv6 Multicast route
pr_warn("%s: route type not supported\n", __func__);
goto out;
}
rtl_table_write(r, idx);
out:
rtl_table_release(r);
}
/*
* Look up the index of a prefix route in the routing table CAM for unicast IPv4/6 routes
* using hardware offload.
*/
static int rtl930x_route_lookup_hw(struct rtl83xx_route *rt)
{
u32 ip4_m, v;
struct in6_addr ip6_m;
int i;
if (rt->attr.type == 1 || rt->attr.type == 3) // Hardware only supports UC routes
return -1;
sw_w32_mask(0x3 << 19, rt->attr.type, RTL930X_L3_HW_LU_KEY_CTRL);
if (rt->attr.type) { // IPv6
rtl930x_net6_mask(rt->prefix_len, &ip6_m);
for (i = 0; i < 4; i++)
sw_w32(rt->dst_ip6.s6_addr32[0] & ip6_m.s6_addr32[0],
RTL930X_L3_HW_LU_KEY_IP_CTRL + (i << 2));
} else { // IPv4
ip4_m = inet_make_mask(rt->prefix_len);
sw_w32(0, RTL930X_L3_HW_LU_KEY_IP_CTRL);
sw_w32(0, RTL930X_L3_HW_LU_KEY_IP_CTRL + 4);
sw_w32(0, RTL930X_L3_HW_LU_KEY_IP_CTRL + 8);
v = rt->dst_ip & ip4_m;
pr_info("%s: searching for %pI4\n", __func__, &v);
sw_w32(v, RTL930X_L3_HW_LU_KEY_IP_CTRL + 12);
}
// Execute CAM lookup in SoC
sw_w32(BIT(15), RTL930X_L3_HW_LU_CTRL);
// Wait until execute bit clears and result is ready
do {
v = sw_r32(RTL930X_L3_HW_LU_CTRL);
} while (v & BIT(15));
pr_info("%s: found: %d, index: %d\n", __func__, !!(v & BIT(14)), v & 0x1ff);
// Test if search successful (BIT 14 set)
if (v & BIT(14))
return v & 0x1ff;
return -1;
}
static int rtl930x_find_l3_slot(struct rtl83xx_route *rt, bool must_exist)
{
int t, s, slot_width, algorithm, addr, idx;
u32 hash;
struct rtl83xx_route route_entry;
// IPv6 entries take up 3 slots
slot_width = (rt->attr.type == 0) || (rt->attr.type == 2) ? 1 : 3;
for (t = 0; t < 2; t++) {
algorithm = (sw_r32(RTL930X_L3_HOST_TBL_CTRL) >> (2 + t)) & 0x1;
hash = rtl930x_l3_hash4(rt->dst_ip, algorithm, false);
pr_debug("%s: table %d, algorithm %d, hash %04x\n", __func__, t, algorithm, hash);
for (s = 0; s < 6; s += slot_width) {
addr = (t << 12) | ((hash & 0x1ff) << 3) | s;
pr_debug("%s physical address %d\n", __func__, addr);
idx = ((addr / 8) * 6) + (addr % 8);
pr_debug("%s logical address %d\n", __func__, idx);
rtl930x_host_route_read(idx, &route_entry);
pr_debug("%s route valid %d, route dest: %pI4, hit %d\n", __func__,
rt->attr.valid, &rt->dst_ip, rt->attr.hit);
if (!must_exist && rt->attr.valid)
return idx;
if (must_exist && route_entry.dst_ip == rt->dst_ip)
return idx;
}
}
return -1;
}
/*
* Write a prefix route into the routing table CAM at position idx
* Currently only IPv4 and IPv6 unicast routes are supported
*/
static void rtl930x_route_write(int idx, struct rtl83xx_route *rt)
{
u32 v, ip4_m;
struct in6_addr ip6_m;
// Access L3_PREFIX_ROUTE_IPUC table (2) via register RTL9300_TBL_1
// The table has a size of 11 registers (20 for MC)
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 2);
pr_debug("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid);
pr_debug("%s: nexthop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n",
__func__, rt->nh.id, rt->attr.hit, rt->attr.action,
rt->attr.ttl_dec, rt->attr.ttl_check, rt->attr.dst_null);
pr_debug("%s: GW: %pI4, prefix_len: %d\n", __func__, &rt->dst_ip, rt->prefix_len);
v = rt->attr.valid ? BIT(31) : 0;
v |= (rt->attr.type & 0x3) << 29;
sw_w32(v, rtl_table_data(r, 0));
v = rt->attr.hit ? BIT(22) : 0;
v |= (rt->attr.action & 0x3) << 18;
v |= (rt->nh.id & 0x7ff) << 7;
v |= rt->attr.ttl_dec ? BIT(6) : 0;
v |= rt->attr.ttl_check ? BIT(5) : 0;
v |= rt->attr.dst_null ? BIT(6) : 0;
v |= rt->attr.qos_as ? BIT(6) : 0;
v |= rt->attr.qos_prio & 0x7;
v |= rt->prefix_len == 0 ? BIT(20) : 0; // set default route bit
// set bit mask for entry type always to 0x3
sw_w32(0x3 << 29, rtl_table_data(r, 5));
switch (rt->attr.type) {
case 0: // IPv4 Unicast route
sw_w32(0, rtl_table_data(r, 1));
sw_w32(0, rtl_table_data(r, 2));
sw_w32(0, rtl_table_data(r, 3));
sw_w32(rt->dst_ip, rtl_table_data(r, 4));
v |= rt->prefix_len == 32 ? BIT(21) : 0; // set host-route bit
ip4_m = inet_make_mask(rt->prefix_len);
sw_w32(0, rtl_table_data(r, 6));
sw_w32(0, rtl_table_data(r, 7));
sw_w32(0, rtl_table_data(r, 8));
sw_w32(ip4_m, rtl_table_data(r, 9));
break;
case 2: // IPv6 Unicast route
sw_w32(rt->dst_ip6.s6_addr32[0], rtl_table_data(r, 1));
sw_w32(rt->dst_ip6.s6_addr32[1], rtl_table_data(r, 2));
sw_w32(rt->dst_ip6.s6_addr32[2], rtl_table_data(r, 3));
sw_w32(rt->dst_ip6.s6_addr32[3], rtl_table_data(r, 4));
v |= rt->prefix_len == 128 ? BIT(21) : 0; // set host-route bit
rtl930x_net6_mask(rt->prefix_len, &ip6_m);
sw_w32(ip6_m.s6_addr32[0], rtl_table_data(r, 6));
sw_w32(ip6_m.s6_addr32[1], rtl_table_data(r, 7));
sw_w32(ip6_m.s6_addr32[2], rtl_table_data(r, 8));
sw_w32(ip6_m.s6_addr32[3], rtl_table_data(r, 9));
break;
case 1: // IPv4 Multicast route
case 3: // IPv6 Multicast route
pr_warn("%s: route type not supported\n", __func__);
rtl_table_release(r);
return;
}
sw_w32(v, rtl_table_data(r, 10));
pr_debug("%s: %08x %08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", __func__,
sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 2)),
sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 4)), sw_r32(rtl_table_data(r, 5)),
sw_r32(rtl_table_data(r, 6)), sw_r32(rtl_table_data(r, 7)), sw_r32(rtl_table_data(r, 8)),
sw_r32(rtl_table_data(r, 9)), sw_r32(rtl_table_data(r, 10)));
rtl_table_write(r, idx);
rtl_table_release(r);
}
/*
* Get the destination MAC and L3 egress interface ID of a nexthop entry from
* the SoC's L3_NEXTHOP table
*/
static void rtl930x_get_l3_nexthop(int idx, u16 *dmac_id, u16 *interface)
{
u32 v;
// Read L3_NEXTHOP table (3) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 3);
rtl_table_read(r, idx);
// The table has a size of 1 register
v = sw_r32(rtl_table_data(r, 0));
rtl_table_release(r);
*dmac_id = (v >> 7) & 0x7fff;
*interface = v & 0x7f;
}
static int rtl930x_l3_mtu_del(struct rtl838x_switch_priv *priv, int mtu)
{
int i;
for (i = 0; i < MAX_INTF_MTUS; i++) {
if (mtu == priv->intf_mtus[i])
break;
}
if (i >= MAX_INTF_MTUS || !priv->intf_mtu_count[i]) {
pr_err("%s: No MTU slot found for MTU: %d\n", __func__, mtu);
return -EINVAL;
}
priv->intf_mtu_count[i]--;
}
static int rtl930x_l3_mtu_add(struct rtl838x_switch_priv *priv, int mtu)
{
int i, free_mtu;
int mtu_id;
// Try to find an existing mtu-value or a free slot
free_mtu = MAX_INTF_MTUS;
for (i = 0; i < MAX_INTF_MTUS && priv->intf_mtus[i] != mtu; i++) {
if ((!priv->intf_mtu_count[i]) && (free_mtu == MAX_INTF_MTUS))
free_mtu = i;
}
i = (i < MAX_INTF_MTUS) ? i : free_mtu;
if (i < MAX_INTF_MTUS) {
mtu_id = i;
} else {
pr_err("%s: No free MTU slot available!\n", __func__);
return -EINVAL;
}
priv->intf_mtus[i] = mtu;
pr_info("Writing MTU %d to slot %d\n", priv->intf_mtus[i], i);
// Set MTU-value of the slot TODO: distinguish between IPv4/IPv6 routes / slots
sw_w32_mask(0xffff << ((i % 2) * 16), priv->intf_mtus[i] << ((i % 2) * 16),
RTL930X_L3_IP_MTU_CTRL(i));
sw_w32_mask(0xffff << ((i % 2) * 16), priv->intf_mtus[i] << ((i % 2) * 16),
RTL930X_L3_IP6_MTU_CTRL(i));
priv->intf_mtu_count[i]++;
return mtu_id;
}
/*
* Creates an interface for a route by setting up the HW tables in the SoC
*/
static int rtl930x_l3_intf_add(struct rtl838x_switch_priv *priv, struct rtl838x_l3_intf *intf)
{
int i, intf_id, mtu_id;
// number of MTU-values < 16384
// Use the same IPv6 mtu as the ip4 mtu for this route if unset
intf->ip6_mtu = intf->ip6_mtu ? intf->ip6_mtu : intf->ip4_mtu;
mtu_id = rtl930x_l3_mtu_add(priv, intf->ip4_mtu);
pr_info("%s: added mtu %d with mtu-id %d\n", __func__, intf->ip4_mtu, mtu_id);
if (mtu_id < 0)
return -ENOSPC;
intf->ip4_mtu_id = mtu_id;
intf->ip6_mtu_id = mtu_id;
for (i = 0; i < MAX_INTERFACES; i++) {
if (!priv->interfaces[i])
break;
}
if (i >= MAX_INTERFACES) {
pr_err("%s: cannot find free interface entry\n", __func__);
return -EINVAL;
}
intf_id = i;
priv->interfaces[i] = kzalloc(sizeof(struct rtl838x_l3_intf), GFP_KERNEL);
if (!priv->interfaces[i]) {
pr_err("%s: no memory to allocate new interface\n", __func__);
return -ENOMEM;
}
}
/*
* Set the destination MAC and L3 egress interface ID for a nexthop entry in the SoC's
* L3_NEXTHOP table. The nexthop entry is identified by idx.
* dmac_id is the reference to the L2 entry in the L2 forwarding table, special values are
* 0x7ffe: TRAP2CPU
* 0x7ffd: TRAP2MASTERCPU
* 0x7fff: DMAC_ID_DROP
*/
static void rtl930x_set_l3_nexthop(int idx, u16 dmac_id, u16 interface)
{
// Access L3_NEXTHOP table (3) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 3);
pr_info("%s: Writing to L3_NEXTHOP table, index %d, dmac_id %d, interface %d\n",
__func__, idx, dmac_id, interface);
sw_w32(((dmac_id & 0x7fff) << 7) | (interface & 0x7f), rtl_table_data(r, 0));
pr_info("%s: %08x\n", __func__, sw_r32(rtl_table_data(r,0)));
rtl_table_write(r, idx);
rtl_table_release(r);
}
static void rtl930x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
{
@ -1618,6 +2064,219 @@ static void rtl930x_pie_init(struct rtl838x_switch_priv *priv)
}
/*
* Sets up an egress interface for L3 actions
* Actions for ip4/6_icmp_redirect, ip4/6_pbr_icmp_redirect are:
* 0: FORWARD, 1: DROP, 2: TRAP2CPU, 3: COPY2CPU, 4: TRAP2MASTERCPU 5: COPY2MASTERCPU
* 6: HARDDROP
* idx is the index in the HW interface table: idx < 0x80
*/
static void rtl930x_set_l3_egress_intf(int idx, struct rtl838x_l3_intf *intf)
{
u32 u, v;
// Read L3_EGR_INTF table (4) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 4);
// The table has 2 registers
u = (intf->vid & 0xfff) << 9;
u |= (intf->smac_idx & 0x3f) << 3;
u |= (intf->ip4_mtu_id & 0x7);
v = (intf->ip6_mtu_id & 0x7) << 28;
v |= (intf->ttl_scope & 0xff) << 20;
v |= (intf->hl_scope & 0xff) << 12;
v |= (intf->ip4_icmp_redirect & 0x7) << 9;
v |= (intf->ip6_icmp_redirect & 0x7)<< 6;
v |= (intf->ip4_pbr_icmp_redirect & 0x7) << 3;
v |= (intf->ip6_pbr_icmp_redirect & 0x7);
sw_w32(u, rtl_table_data(r, 0));
sw_w32(v, rtl_table_data(r, 1));
pr_info("%s writing to index %d: %08x %08x\n", __func__, idx, u, v);
rtl_table_write(r, idx & 0x7f);
rtl_table_release(r);
}
/*
* Reads a MAC entry for L3 termination as entry point for routing
* from the hardware table
* idx is the index into the L3_ROUTER_MAC table
*/
static void rtl930x_get_l3_router_mac(u32 idx, struct rtl93xx_rt_mac *m)
{
u32 v, w;
// Read L3_ROUTER_MAC table (0) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 0);
rtl_table_read(r, idx);
// The table has a size of 7 registers, 64 entries
v = sw_r32(rtl_table_data(r, 0));
w = sw_r32(rtl_table_data(r, 3));
m->valid = !!(v & BIT(20));
if (!m->valid)
goto out;
m->p_type = !!(v & BIT(19));
m->p_id = (v >> 13) & 0x3f; // trunk id of port
m->vid = v & 0xfff;
m->vid_mask = w & 0xfff;
m->action = sw_r32(rtl_table_data(r, 6)) & 0x7;
m->mac_mask = ((((u64)sw_r32(rtl_table_data(r, 5))) << 32) & 0xffffffffffffULL)
| (sw_r32(rtl_table_data(r, 4)));
m->mac = ((((u64)sw_r32(rtl_table_data(r, 1))) << 32) & 0xffffffffffffULL)
| (sw_r32(rtl_table_data(r, 2)));
// Bits L3_INTF and BMSK_L3_INTF are 0
out:
rtl_table_release(r);
}
/*
* Writes a MAC entry for L3 termination as entry point for routing
* into the hardware table
* idx is the index into the L3_ROUTER_MAC table
*/
static void rtl930x_set_l3_router_mac(u32 idx, struct rtl93xx_rt_mac *m)
{
u32 v, w;
// Read L3_ROUTER_MAC table (0) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 0);
// The table has a size of 7 registers, 64 entries
v = BIT(20); // mac entry valid, port type is 0: individual
v |= (m->p_id & 0x3f) << 13;
v |= (m->vid & 0xfff); // Set the interface_id to the vlan id
w = m->vid_mask;
w |= (m->p_id_mask & 0x3f) << 13;
sw_w32(v, rtl_table_data(r, 0));
sw_w32(w, rtl_table_data(r, 3));
// Set MAC address, L3_INTF (bit 12 in register 1) needs to be 0
sw_w32((u32)(m->mac), rtl_table_data(r, 2));
sw_w32(m->mac >> 32, rtl_table_data(r, 1));
// Set MAC address mask, BMSK_L3_INTF (bit 12 in register 5) needs to be 0
sw_w32((u32)(m->mac_mask >> 32), rtl_table_data(r, 4));
sw_w32((u32)m->mac_mask, rtl_table_data(r, 5));
sw_w32(m->action & 0x7, rtl_table_data(r, 6));
pr_debug("%s writing index %d: %08x %08x %08x %08x %08x %08x %08x\n", __func__, idx,
sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 2)),
sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 4)), sw_r32(rtl_table_data(r, 5)),
sw_r32(rtl_table_data(r, 6))
);
rtl_table_write(r, idx);
rtl_table_release(r);
}
/*
* Get the Destination-MAC of an L3 egress interface or the Source MAC for routed packets
* from the SoC's L3_EGR_INTF_MAC table
* Indexes 0-2047 are DMACs, 2048+ are SMACs
*/
static u64 rtl930x_get_l3_egress_mac(u32 idx)
{
u64 mac;
// Read L3_EGR_INTF_MAC table (2) via register RTL9300_TBL_2
struct table_reg *r = rtl_table_get(RTL9300_TBL_2, 2);
rtl_table_read(r, idx);
// The table has a size of 2 registers
mac = sw_r32(rtl_table_data(r, 0));
mac <<= 32;
mac |= sw_r32(rtl_table_data(r, 1));
rtl_table_release(r);
return mac;
}
/*
* Set the Destination-MAC of a route or the Source MAC of an L3 egress interface
* in the SoC's L3_EGR_INTF_MAC table
* Indexes 0-2047 are DMACs, 2048+ are SMACs
*/
static void rtl930x_set_l3_egress_mac(u32 idx, u64 mac)
{
// Access L3_EGR_INTF_MAC table (2) via register RTL9300_TBL_2
struct table_reg *r = rtl_table_get(RTL9300_TBL_2, 2);
// The table has a size of 2 registers
sw_w32(mac >> 32, rtl_table_data(r, 0));
sw_w32(mac, rtl_table_data(r, 1));
pr_debug("%s: setting index %d to %016llx\n", __func__, idx, mac);
rtl_table_write(r, idx);
rtl_table_release(r);
}
/*
* Configure L3 routing settings of the device:
* - MTUs
* - Egress interface
* - The router's MAC address on which routed packets are expected
* - MAC addresses used as source macs of routed packets
*/
int rtl930x_l3_setup(struct rtl838x_switch_priv *priv)
{
int i;
// Setup MTU with id 0 for default interface
for (i = 0; i < MAX_INTF_MTUS; i++)
priv->intf_mtu_count[i] = priv->intf_mtus[i] = 0;
priv->intf_mtu_count[0] = 0; // Needs to stay forever
priv->intf_mtus[0] = DEFAULT_MTU;
sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP_MTU_CTRL(0));
sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP6_MTU_CTRL(0));
priv->intf_mtus[1] = DEFAULT_MTU;
sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP_MTU_CTRL(0));
sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP6_MTU_CTRL(0));
sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP_MTU_CTRL(1));
sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP6_MTU_CTRL(1));
sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP_MTU_CTRL(1));
sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP6_MTU_CTRL(1));
// Clear all source port MACs
for (i = 0; i < MAX_SMACS; i++)
rtl930x_set_l3_egress_mac(L3_EGRESS_DMACS + i, 0ULL);
// Configure the default L3 hash algorithm
sw_w32_mask(BIT(2), 0, RTL930X_L3_HOST_TBL_CTRL); // Algorithm selection 0 = 0
sw_w32_mask(0, BIT(3), RTL930X_L3_HOST_TBL_CTRL); // Algorithm selection 1 = 1
pr_info("L3_IPUC_ROUTE_CTRL %08x, IPMC_ROUTE %08x, IP6UC_ROUTE %08x, IP6MC_ROUTE %08x\n",
sw_r32(RTL930X_L3_IPUC_ROUTE_CTRL), sw_r32(RTL930X_L3_IPMC_ROUTE_CTRL),
sw_r32(RTL930X_L3_IP6UC_ROUTE_CTRL), sw_r32(RTL930X_L3_IP6MC_ROUTE_CTRL));
sw_w32_mask(0, 1, RTL930X_L3_IPUC_ROUTE_CTRL);
sw_w32_mask(0, 1, RTL930X_L3_IP6UC_ROUTE_CTRL);
sw_w32_mask(0, 1, RTL930X_L3_IPMC_ROUTE_CTRL);
sw_w32_mask(0, 1, RTL930X_L3_IP6MC_ROUTE_CTRL);
sw_w32(0x00002001, RTL930X_L3_IPUC_ROUTE_CTRL);
sw_w32(0x00014581, RTL930X_L3_IP6UC_ROUTE_CTRL);
sw_w32(0x00000501, RTL930X_L3_IPMC_ROUTE_CTRL);
sw_w32(0x00012881, RTL930X_L3_IP6MC_ROUTE_CTRL);
pr_info("L3_IPUC_ROUTE_CTRL %08x, IPMC_ROUTE %08x, IP6UC_ROUTE %08x, IP6MC_ROUTE %08x\n",
sw_r32(RTL930X_L3_IPUC_ROUTE_CTRL), sw_r32(RTL930X_L3_IPMC_ROUTE_CTRL),
sw_r32(RTL930X_L3_IP6UC_ROUTE_CTRL), sw_r32(RTL930X_L3_IP6MC_ROUTE_CTRL));
// Trap non-ip traffic to the CPU-port (e.g. ARP so we stay reachable)
sw_w32_mask(0x3 << 8, 0x1 << 8, RTL930X_L3_IP_ROUTE_CTRL);
pr_info("L3_IP_ROUTE_CTRL %08x\n", sw_r32(RTL930X_L3_IP_ROUTE_CTRL));
// PORT_ISO_RESTRICT_ROUTE_CTRL ?
// Do not use prefix route 0 because of HW limitations
set_bit(0, priv->route_use_bm);
return 0;
}
static u32 rtl930x_packet_cntr_read(int counter)
{
u32 v;
@ -1709,7 +2368,7 @@ const struct rtl838x_reg rtl930x_reg = {
.read_cam = rtl930x_read_cam,
.write_cam = rtl930x_write_cam,
.vlan_port_egr_filter = RTL930X_VLAN_PORT_EGR_FLTR,
.vlan_port_igr_filter = RTL930X_VLAN_PORT_IGR_FLTR(0),
.vlan_port_igr_filter = RTL930X_VLAN_PORT_IGR_FLTR,
.vlan_port_pb = RTL930X_VLAN_PORT_PB_VLAN,
.vlan_port_tag_sts_ctrl = RTL930X_VLAN_PORT_TAG_STS_CTRL,
.trk_mbr_ctr = rtl930x_trk_mbr_ctr,
@ -1717,6 +2376,8 @@ const struct rtl838x_reg rtl930x_reg = {
.init_eee = rtl930x_init_eee,
.port_eee_set = rtl930x_port_eee_set,
.eee_port_ability = rtl930x_eee_port_ability,
.l2_hash_seed = rtl930x_l2_hash_seed,
.l2_hash_key = rtl930x_l2_hash_key,
.read_mcast_pmask = rtl930x_read_mcast_pmask,
.write_mcast_pmask = rtl930x_write_mcast_pmask,
.pie_init = rtl930x_pie_init,
@ -1726,4 +2387,17 @@ const struct rtl838x_reg rtl930x_reg = {
.l2_learning_setup = rtl930x_l2_learning_setup,
.packet_cntr_read = rtl930x_packet_cntr_read,
.packet_cntr_clear = rtl930x_packet_cntr_clear,
.route_read = rtl930x_route_read,
.route_write = rtl930x_route_write,
.host_route_write = rtl930x_host_route_write,
.l3_setup = rtl930x_l3_setup,
.set_l3_nexthop = rtl930x_set_l3_nexthop,
.get_l3_nexthop = rtl930x_get_l3_nexthop,
.get_l3_egress_mac = rtl930x_get_l3_egress_mac,
.set_l3_egress_mac = rtl930x_set_l3_egress_mac,
.find_l3_slot = rtl930x_find_l3_slot,
.route_lookup_hw = rtl930x_route_lookup_hw,
.get_l3_router_mac = rtl930x_get_l3_router_mac,
.set_l3_router_mac = rtl930x_set_l3_router_mac,
.set_l3_egress_intf = rtl930x_set_l3_egress_intf,
};

View File

@ -384,8 +384,8 @@ const struct rtl838x_reg rtl931x_reg = {
.mac_tx_pause_sts = RTL931X_MAC_TX_PAUSE_STS,
.read_l2_entry_using_hash = rtl931x_read_l2_entry_using_hash,
.read_cam = rtl931x_read_cam,
.vlan_port_egr_filter = RTL931X_VLAN_PORT_EGR_FLTR(0),
.vlan_port_igr_filter = RTL931X_VLAN_PORT_IGR_FLTR(0),
.vlan_port_egr_filter = RTL931X_VLAN_PORT_EGR_FLTR,
.vlan_port_igr_filter = RTL931X_VLAN_PORT_IGR_FLTR,
// .vlan_port_pb = does not exist
.vlan_port_tag_sts_ctrl = RTL931X_VLAN_PORT_TAG_CTRL,
.trk_mbr_ctr = rtl931x_trk_mbr_ctr,