mirror of
git://anongit.mindrot.org/openssh.git
synced 2025-01-03 16:22:05 +00:00
8a56dc2b6b
[blocks.c ed25519.c fe25519.c fe25519.h ge25519.c ge25519.h] [ge25519_base.data hash.c sc25519.c sc25519.h verify.c] Add Authors for the public domain ed25519/nacl code. see also http://nacl.cr.yp.to/features.html All of the NaCl software is in the public domain. and http://ed25519.cr.yp.to/software.html The Ed25519 software is in the public domain.
336 lines
8.1 KiB
C
336 lines
8.1 KiB
C
/* $OpenBSD: fe25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */
|
|
|
|
/*
|
|
* Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange,
|
|
* Peter Schwabe, Bo-Yin Yang.
|
|
* Copied from supercop-20130419/crypto_sign/ed25519/ref/fe25519.c
|
|
*/
|
|
|
|
#define WINDOWSIZE 1 /* Should be 1,2, or 4 */
|
|
#define WINDOWMASK ((1<<WINDOWSIZE)-1)
|
|
|
|
#include "fe25519.h"
|
|
|
|
static crypto_uint32 equal(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
|
|
{
|
|
crypto_uint32 x = a ^ b; /* 0: yes; 1..65535: no */
|
|
x -= 1; /* 4294967295: yes; 0..65534: no */
|
|
x >>= 31; /* 1: yes; 0: no */
|
|
return x;
|
|
}
|
|
|
|
static crypto_uint32 ge(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
|
|
{
|
|
unsigned int x = a;
|
|
x -= (unsigned int) b; /* 0..65535: yes; 4294901761..4294967295: no */
|
|
x >>= 31; /* 0: yes; 1: no */
|
|
x ^= 1; /* 1: yes; 0: no */
|
|
return x;
|
|
}
|
|
|
|
static crypto_uint32 times19(crypto_uint32 a)
|
|
{
|
|
return (a << 4) + (a << 1) + a;
|
|
}
|
|
|
|
static crypto_uint32 times38(crypto_uint32 a)
|
|
{
|
|
return (a << 5) + (a << 2) + (a << 1);
|
|
}
|
|
|
|
static void reduce_add_sub(fe25519 *r)
|
|
{
|
|
crypto_uint32 t;
|
|
int i,rep;
|
|
|
|
for(rep=0;rep<4;rep++)
|
|
{
|
|
t = r->v[31] >> 7;
|
|
r->v[31] &= 127;
|
|
t = times19(t);
|
|
r->v[0] += t;
|
|
for(i=0;i<31;i++)
|
|
{
|
|
t = r->v[i] >> 8;
|
|
r->v[i+1] += t;
|
|
r->v[i] &= 255;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void reduce_mul(fe25519 *r)
|
|
{
|
|
crypto_uint32 t;
|
|
int i,rep;
|
|
|
|
for(rep=0;rep<2;rep++)
|
|
{
|
|
t = r->v[31] >> 7;
|
|
r->v[31] &= 127;
|
|
t = times19(t);
|
|
r->v[0] += t;
|
|
for(i=0;i<31;i++)
|
|
{
|
|
t = r->v[i] >> 8;
|
|
r->v[i+1] += t;
|
|
r->v[i] &= 255;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* reduction modulo 2^255-19 */
|
|
void fe25519_freeze(fe25519 *r)
|
|
{
|
|
int i;
|
|
crypto_uint32 m = equal(r->v[31],127);
|
|
for(i=30;i>0;i--)
|
|
m &= equal(r->v[i],255);
|
|
m &= ge(r->v[0],237);
|
|
|
|
m = -m;
|
|
|
|
r->v[31] -= m&127;
|
|
for(i=30;i>0;i--)
|
|
r->v[i] -= m&255;
|
|
r->v[0] -= m&237;
|
|
}
|
|
|
|
void fe25519_unpack(fe25519 *r, const unsigned char x[32])
|
|
{
|
|
int i;
|
|
for(i=0;i<32;i++) r->v[i] = x[i];
|
|
r->v[31] &= 127;
|
|
}
|
|
|
|
/* Assumes input x being reduced below 2^255 */
|
|
void fe25519_pack(unsigned char r[32], const fe25519 *x)
|
|
{
|
|
int i;
|
|
fe25519 y = *x;
|
|
fe25519_freeze(&y);
|
|
for(i=0;i<32;i++)
|
|
r[i] = y.v[i];
|
|
}
|
|
|
|
int fe25519_iszero(const fe25519 *x)
|
|
{
|
|
int i;
|
|
int r;
|
|
fe25519 t = *x;
|
|
fe25519_freeze(&t);
|
|
r = equal(t.v[0],0);
|
|
for(i=1;i<32;i++)
|
|
r &= equal(t.v[i],0);
|
|
return r;
|
|
}
|
|
|
|
int fe25519_iseq_vartime(const fe25519 *x, const fe25519 *y)
|
|
{
|
|
int i;
|
|
fe25519 t1 = *x;
|
|
fe25519 t2 = *y;
|
|
fe25519_freeze(&t1);
|
|
fe25519_freeze(&t2);
|
|
for(i=0;i<32;i++)
|
|
if(t1.v[i] != t2.v[i]) return 0;
|
|
return 1;
|
|
}
|
|
|
|
void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b)
|
|
{
|
|
int i;
|
|
crypto_uint32 mask = b;
|
|
mask = -mask;
|
|
for(i=0;i<32;i++) r->v[i] ^= mask & (x->v[i] ^ r->v[i]);
|
|
}
|
|
|
|
unsigned char fe25519_getparity(const fe25519 *x)
|
|
{
|
|
fe25519 t = *x;
|
|
fe25519_freeze(&t);
|
|
return t.v[0] & 1;
|
|
}
|
|
|
|
void fe25519_setone(fe25519 *r)
|
|
{
|
|
int i;
|
|
r->v[0] = 1;
|
|
for(i=1;i<32;i++) r->v[i]=0;
|
|
}
|
|
|
|
void fe25519_setzero(fe25519 *r)
|
|
{
|
|
int i;
|
|
for(i=0;i<32;i++) r->v[i]=0;
|
|
}
|
|
|
|
void fe25519_neg(fe25519 *r, const fe25519 *x)
|
|
{
|
|
fe25519 t;
|
|
int i;
|
|
for(i=0;i<32;i++) t.v[i]=x->v[i];
|
|
fe25519_setzero(r);
|
|
fe25519_sub(r, r, &t);
|
|
}
|
|
|
|
void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y)
|
|
{
|
|
int i;
|
|
for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i];
|
|
reduce_add_sub(r);
|
|
}
|
|
|
|
void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y)
|
|
{
|
|
int i;
|
|
crypto_uint32 t[32];
|
|
t[0] = x->v[0] + 0x1da;
|
|
t[31] = x->v[31] + 0xfe;
|
|
for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe;
|
|
for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i];
|
|
reduce_add_sub(r);
|
|
}
|
|
|
|
void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y)
|
|
{
|
|
int i,j;
|
|
crypto_uint32 t[63];
|
|
for(i=0;i<63;i++)t[i] = 0;
|
|
|
|
for(i=0;i<32;i++)
|
|
for(j=0;j<32;j++)
|
|
t[i+j] += x->v[i] * y->v[j];
|
|
|
|
for(i=32;i<63;i++)
|
|
r->v[i-32] = t[i-32] + times38(t[i]);
|
|
r->v[31] = t[31]; /* result now in r[0]...r[31] */
|
|
|
|
reduce_mul(r);
|
|
}
|
|
|
|
void fe25519_square(fe25519 *r, const fe25519 *x)
|
|
{
|
|
fe25519_mul(r, x, x);
|
|
}
|
|
|
|
void fe25519_invert(fe25519 *r, const fe25519 *x)
|
|
{
|
|
fe25519 z2;
|
|
fe25519 z9;
|
|
fe25519 z11;
|
|
fe25519 z2_5_0;
|
|
fe25519 z2_10_0;
|
|
fe25519 z2_20_0;
|
|
fe25519 z2_50_0;
|
|
fe25519 z2_100_0;
|
|
fe25519 t0;
|
|
fe25519 t1;
|
|
int i;
|
|
|
|
/* 2 */ fe25519_square(&z2,x);
|
|
/* 4 */ fe25519_square(&t1,&z2);
|
|
/* 8 */ fe25519_square(&t0,&t1);
|
|
/* 9 */ fe25519_mul(&z9,&t0,x);
|
|
/* 11 */ fe25519_mul(&z11,&z9,&z2);
|
|
/* 22 */ fe25519_square(&t0,&z11);
|
|
/* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9);
|
|
|
|
/* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0);
|
|
/* 2^7 - 2^2 */ fe25519_square(&t1,&t0);
|
|
/* 2^8 - 2^3 */ fe25519_square(&t0,&t1);
|
|
/* 2^9 - 2^4 */ fe25519_square(&t1,&t0);
|
|
/* 2^10 - 2^5 */ fe25519_square(&t0,&t1);
|
|
/* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0);
|
|
|
|
/* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0);
|
|
/* 2^12 - 2^2 */ fe25519_square(&t1,&t0);
|
|
/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
|
|
/* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0);
|
|
|
|
/* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0);
|
|
/* 2^22 - 2^2 */ fe25519_square(&t1,&t0);
|
|
/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
|
|
/* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0);
|
|
|
|
/* 2^41 - 2^1 */ fe25519_square(&t1,&t0);
|
|
/* 2^42 - 2^2 */ fe25519_square(&t0,&t1);
|
|
/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
|
|
/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0);
|
|
|
|
/* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0);
|
|
/* 2^52 - 2^2 */ fe25519_square(&t1,&t0);
|
|
/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
|
|
/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0);
|
|
|
|
/* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0);
|
|
/* 2^102 - 2^2 */ fe25519_square(&t0,&t1);
|
|
/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
|
|
/* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0);
|
|
|
|
/* 2^201 - 2^1 */ fe25519_square(&t0,&t1);
|
|
/* 2^202 - 2^2 */ fe25519_square(&t1,&t0);
|
|
/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
|
|
/* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0);
|
|
|
|
/* 2^251 - 2^1 */ fe25519_square(&t1,&t0);
|
|
/* 2^252 - 2^2 */ fe25519_square(&t0,&t1);
|
|
/* 2^253 - 2^3 */ fe25519_square(&t1,&t0);
|
|
/* 2^254 - 2^4 */ fe25519_square(&t0,&t1);
|
|
/* 2^255 - 2^5 */ fe25519_square(&t1,&t0);
|
|
/* 2^255 - 21 */ fe25519_mul(r,&t1,&z11);
|
|
}
|
|
|
|
void fe25519_pow2523(fe25519 *r, const fe25519 *x)
|
|
{
|
|
fe25519 z2;
|
|
fe25519 z9;
|
|
fe25519 z11;
|
|
fe25519 z2_5_0;
|
|
fe25519 z2_10_0;
|
|
fe25519 z2_20_0;
|
|
fe25519 z2_50_0;
|
|
fe25519 z2_100_0;
|
|
fe25519 t;
|
|
int i;
|
|
|
|
/* 2 */ fe25519_square(&z2,x);
|
|
/* 4 */ fe25519_square(&t,&z2);
|
|
/* 8 */ fe25519_square(&t,&t);
|
|
/* 9 */ fe25519_mul(&z9,&t,x);
|
|
/* 11 */ fe25519_mul(&z11,&z9,&z2);
|
|
/* 22 */ fe25519_square(&t,&z11);
|
|
/* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t,&z9);
|
|
|
|
/* 2^6 - 2^1 */ fe25519_square(&t,&z2_5_0);
|
|
/* 2^10 - 2^5 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); }
|
|
/* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t,&z2_5_0);
|
|
|
|
/* 2^11 - 2^1 */ fe25519_square(&t,&z2_10_0);
|
|
/* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
|
|
/* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t,&z2_10_0);
|
|
|
|
/* 2^21 - 2^1 */ fe25519_square(&t,&z2_20_0);
|
|
/* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); }
|
|
/* 2^40 - 2^0 */ fe25519_mul(&t,&t,&z2_20_0);
|
|
|
|
/* 2^41 - 2^1 */ fe25519_square(&t,&t);
|
|
/* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
|
|
/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0);
|
|
|
|
/* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0);
|
|
/* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
|
|
/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0);
|
|
|
|
/* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0);
|
|
/* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); }
|
|
/* 2^200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0);
|
|
|
|
/* 2^201 - 2^1 */ fe25519_square(&t,&t);
|
|
/* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
|
|
/* 2^250 - 2^0 */ fe25519_mul(&t,&t,&z2_50_0);
|
|
|
|
/* 2^251 - 2^1 */ fe25519_square(&t,&t);
|
|
/* 2^252 - 2^2 */ fe25519_square(&t,&t);
|
|
/* 2^252 - 3 */ fe25519_mul(r,&t,x);
|
|
}
|