openssh/rijndael.c

426 lines
12 KiB
C

/* $OpenBSD: rijndael.c,v 1.8 2001/07/30 16:23:30 stevesk Exp $ */
/* This is an independent implementation of the encryption algorithm: */
/* */
/* RIJNDAEL by Joan Daemen and Vincent Rijmen */
/* */
/* which is a candidate algorithm in the Advanced Encryption Standard */
/* programme of the US National Institute of Standards and Technology. */
/*
-----------------------------------------------------------------------
Copyright (c) 2001 Dr Brian Gladman <brg@gladman.uk.net>, Worcester, UK
TERMS
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
This software is provided 'as is' with no guarantees of correctness or
fitness for purpose.
-----------------------------------------------------------------------
*/
/* Timing data for Rijndael (rijndael.c)
Algorithm: rijndael (rijndael.c)
128 bit key:
Key Setup: 305/1389 cycles (encrypt/decrypt)
Encrypt: 374 cycles = 68.4 mbits/sec
Decrypt: 352 cycles = 72.7 mbits/sec
Mean: 363 cycles = 70.5 mbits/sec
192 bit key:
Key Setup: 277/1595 cycles (encrypt/decrypt)
Encrypt: 439 cycles = 58.3 mbits/sec
Decrypt: 425 cycles = 60.2 mbits/sec
Mean: 432 cycles = 59.3 mbits/sec
256 bit key:
Key Setup: 374/1960 cycles (encrypt/decrypt)
Encrypt: 502 cycles = 51.0 mbits/sec
Decrypt: 498 cycles = 51.4 mbits/sec
Mean: 500 cycles = 51.2 mbits/sec
*/
#include "config.h"
#include "rijndael.h"
void gen_tabs __P((void));
/* 3. Basic macros for speeding up generic operations */
/* Circular rotate of 32 bit values */
#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
/* Invert byte order in a 32 bit variable */
#define bswap(x) ((rotl(x, 8) & 0x00ff00ff) | (rotr(x, 8) & 0xff00ff00))
/* Extract byte from a 32 bit quantity (little endian notation) */
#define byte(x,n) ((u1byte)((x) >> (8 * n)))
#ifdef WORDS_BIGENDIAN
#define BYTE_SWAP
#endif
#ifdef BYTE_SWAP
#define io_swap(x) bswap(x)
#else
#define io_swap(x) (x)
#endif
#define LARGE_TABLES
u1byte pow_tab[256];
u1byte log_tab[256];
u1byte sbx_tab[256];
u1byte isb_tab[256];
u4byte rco_tab[ 10];
u4byte ft_tab[4][256];
u4byte it_tab[4][256];
#ifdef LARGE_TABLES
u4byte fl_tab[4][256];
u4byte il_tab[4][256];
#endif
u4byte tab_gen = 0;
#define ff_mult(a,b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
#define f_rn(bo, bi, n, k) \
bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
#define i_rn(bo, bi, n, k) \
bo[n] = it_tab[0][byte(bi[n],0)] ^ \
it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
#ifdef LARGE_TABLES
#define ls_box(x) \
( fl_tab[0][byte(x, 0)] ^ \
fl_tab[1][byte(x, 1)] ^ \
fl_tab[2][byte(x, 2)] ^ \
fl_tab[3][byte(x, 3)] )
#define f_rl(bo, bi, n, k) \
bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
#define i_rl(bo, bi, n, k) \
bo[n] = il_tab[0][byte(bi[n],0)] ^ \
il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
#else
#define ls_box(x) \
((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
((u4byte)sbx_tab[byte(x, 3)] << 24)
#define f_rl(bo, bi, n, k) \
bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^ \
rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]), 8) ^ \
rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)
#define i_rl(bo, bi, n, k) \
bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^ \
rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]), 8) ^ \
rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)
#endif
void
gen_tabs(void)
{
u4byte i, t;
u1byte p, q;
/* log and power tables for GF(2**8) finite field with */
/* 0x11b as modular polynomial - the simplest prmitive */
/* root is 0x11, used here to generate the tables */
for(i = 0,p = 1; i < 256; ++i) {
pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i;
p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
}
log_tab[1] = 0; p = 1;
for(i = 0; i < 10; ++i) {
rco_tab[i] = p;
p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
}
/* note that the affine byte transformation matrix in */
/* rijndael specification is in big endian format with */
/* bit 0 as the most significant bit. In the remainder */
/* of the specification the bits are numbered from the */
/* least significant end of a byte. */
for(i = 0; i < 256; ++i) {
p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p;
q = (q >> 7) | (q << 1); p ^= q;
q = (q >> 7) | (q << 1); p ^= q;
q = (q >> 7) | (q << 1); p ^= q;
q = (q >> 7) | (q << 1); p ^= q ^ 0x63;
sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i;
}
for(i = 0; i < 256; ++i) {
p = sbx_tab[i];
#ifdef LARGE_TABLES
t = p; fl_tab[0][i] = t;
fl_tab[1][i] = rotl(t, 8);
fl_tab[2][i] = rotl(t, 16);
fl_tab[3][i] = rotl(t, 24);
#endif
t = ((u4byte)ff_mult(2, p)) |
((u4byte)p << 8) |
((u4byte)p << 16) |
((u4byte)ff_mult(3, p) << 24);
ft_tab[0][i] = t;
ft_tab[1][i] = rotl(t, 8);
ft_tab[2][i] = rotl(t, 16);
ft_tab[3][i] = rotl(t, 24);
p = isb_tab[i];
#ifdef LARGE_TABLES
t = p; il_tab[0][i] = t;
il_tab[1][i] = rotl(t, 8);
il_tab[2][i] = rotl(t, 16);
il_tab[3][i] = rotl(t, 24);
#endif
t = ((u4byte)ff_mult(14, p)) |
((u4byte)ff_mult( 9, p) << 8) |
((u4byte)ff_mult(13, p) << 16) |
((u4byte)ff_mult(11, p) << 24);
it_tab[0][i] = t;
it_tab[1][i] = rotl(t, 8);
it_tab[2][i] = rotl(t, 16);
it_tab[3][i] = rotl(t, 24);
}
tab_gen = 1;
}
#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
#define imix_col(y,x) \
u = star_x(x); \
v = star_x(u); \
w = star_x(v); \
t = w ^ (x); \
(y) = u ^ v ^ w; \
(y) ^= rotr(u ^ t, 8) ^ \
rotr(v ^ t, 16) ^ \
rotr(t,24)
/* initialise the key schedule from the user supplied key */
#define loop4(i) \
{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \
t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \
t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \
t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \
}
#define loop6(i) \
{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
t ^= e_key[6 * i]; e_key[6 * i + 6] = t; \
t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t; \
t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t; \
t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t; \
t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t; \
t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t; \
}
#define loop8(i) \
{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
t ^= e_key[8 * i]; e_key[8 * i + 8] = t; \
t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t; \
t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t; \
t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t; \
t = e_key[8 * i + 4] ^ ls_box(t); \
e_key[8 * i + 12] = t; \
t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t; \
t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t; \
t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t; \
}
rijndael_ctx *
rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
int encrypt)
{
u4byte i, t, u, v, w;
u4byte *e_key = ctx->e_key;
u4byte *d_key = ctx->d_key;
ctx->decrypt = !encrypt;
if(!tab_gen)
gen_tabs();
ctx->k_len = (key_len + 31) / 32;
e_key[0] = io_swap(in_key[0]); e_key[1] = io_swap(in_key[1]);
e_key[2] = io_swap(in_key[2]); e_key[3] = io_swap(in_key[3]);
switch(ctx->k_len) {
case 4: t = e_key[3];
for(i = 0; i < 10; ++i)
loop4(i);
break;
case 6: e_key[4] = io_swap(in_key[4]); t = e_key[5] = io_swap(in_key[5]);
for(i = 0; i < 8; ++i)
loop6(i);
break;
case 8: e_key[4] = io_swap(in_key[4]); e_key[5] = io_swap(in_key[5]);
e_key[6] = io_swap(in_key[6]); t = e_key[7] = io_swap(in_key[7]);
for(i = 0; i < 7; ++i)
loop8(i);
break;
}
if (!encrypt) {
d_key[0] = e_key[0]; d_key[1] = e_key[1];
d_key[2] = e_key[2]; d_key[3] = e_key[3];
for(i = 4; i < 4 * ctx->k_len + 24; ++i) {
imix_col(d_key[i], e_key[i]);
}
}
return ctx;
}
/* encrypt a block of text */
#define f_nround(bo, bi, k) \
f_rn(bo, bi, 0, k); \
f_rn(bo, bi, 1, k); \
f_rn(bo, bi, 2, k); \
f_rn(bo, bi, 3, k); \
k += 4
#define f_lround(bo, bi, k) \
f_rl(bo, bi, 0, k); \
f_rl(bo, bi, 1, k); \
f_rl(bo, bi, 2, k); \
f_rl(bo, bi, 3, k)
void
rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
{
u4byte k_len = ctx->k_len;
u4byte *e_key = ctx->e_key;
u4byte b0[4], b1[4], *kp;
b0[0] = io_swap(in_blk[0]) ^ e_key[0];
b0[1] = io_swap(in_blk[1]) ^ e_key[1];
b0[2] = io_swap(in_blk[2]) ^ e_key[2];
b0[3] = io_swap(in_blk[3]) ^ e_key[3];
kp = e_key + 4;
if(k_len > 6) {
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
}
if(k_len > 4) {
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
}
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
f_nround(b1, b0, kp); f_lround(b0, b1, kp);
out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
}
/* decrypt a block of text */
#define i_nround(bo, bi, k) \
i_rn(bo, bi, 0, k); \
i_rn(bo, bi, 1, k); \
i_rn(bo, bi, 2, k); \
i_rn(bo, bi, 3, k); \
k -= 4
#define i_lround(bo, bi, k) \
i_rl(bo, bi, 0, k); \
i_rl(bo, bi, 1, k); \
i_rl(bo, bi, 2, k); \
i_rl(bo, bi, 3, k)
void
rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
{
u4byte b0[4], b1[4], *kp;
u4byte k_len = ctx->k_len;
u4byte *e_key = ctx->e_key;
u4byte *d_key = ctx->d_key;
b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
kp = d_key + 4 * (k_len + 5);
if(k_len > 6) {
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
}
if(k_len > 4) {
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
}
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
i_nround(b1, b0, kp); i_lround(b0, b1, kp);
out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
}