Commit Graph

5 Commits

Author SHA1 Message Date
Damien Miller
eb8b60e320 - djm@cvs.openbsd.org 2010/08/31 11:54:45
[PROTOCOL PROTOCOL.agent PROTOCOL.certkeys auth2-jpake.c authfd.c]
     [authfile.c buffer.h dns.c kex.c kex.h key.c key.h monitor.c]
     [monitor_wrap.c myproposal.h packet.c packet.h pathnames.h readconf.c]
     [ssh-add.1 ssh-add.c ssh-agent.1 ssh-agent.c ssh-keygen.1 ssh-keygen.c]
     [ssh-keyscan.1 ssh-keyscan.c ssh-keysign.8 ssh.1 ssh.c ssh2.h]
     [ssh_config.5 sshconnect.c sshconnect2.c sshd.8 sshd.c sshd_config.5]
     [uuencode.c uuencode.h bufec.c kexecdh.c kexecdhc.c kexecdhs.c ssh-ecdsa.c]
     Implement Elliptic Curve Cryptography modes for key exchange (ECDH) and
     host/user keys (ECDSA) as specified by RFC5656. ECDH and ECDSA offer
     better performance than plain DH and DSA at the same equivalent symmetric
     key length, as well as much shorter keys.

     Only the mandatory sections of RFC5656 are implemented, specifically the
     three REQUIRED curves nistp256, nistp384 and nistp521 and only ECDH and
     ECDSA. Point compression (optional in RFC5656 is NOT implemented).

     Certificate host and user keys using the new ECDSA key types are supported.

     Note that this code has not been tested for interoperability and may be
     subject to change.

     feedback and ok markus@
2010-08-31 22:41:14 +10:00
Damien Miller
0a80ca190a - OpenBSD CVS Sync
- djm@cvs.openbsd.org 2010/02/26 20:29:54
     [PROTOCOL PROTOCOL.agent PROTOCOL.certkeys addrmatch.c auth-options.c]
     [auth-options.h auth.h auth2-pubkey.c authfd.c dns.c dns.h hostfile.c]
     [hostfile.h kex.h kexdhs.c kexgexs.c key.c key.h match.h monitor.c]
     [myproposal.h servconf.c servconf.h ssh-add.c ssh-agent.c ssh-dss.c]
     [ssh-keygen.1 ssh-keygen.c ssh-rsa.c ssh.1 ssh.c ssh2.h sshconnect.c]
     [sshconnect2.c sshd.8 sshd.c sshd_config.5]
     Add support for certificate key types for users and hosts.

     OpenSSH certificate key types are not X.509 certificates, but a much
     simpler format that encodes a public key, identity information and
     some validity constraints and signs it with a CA key. CA keys are
     regular SSH keys. This certificate style avoids the attack surface
     of X.509 certificates and is very easy to deploy.

     Certified host keys allow automatic acceptance of new host keys
     when a CA certificate is marked as sh/known_hosts.
     see VERIFYING HOST KEYS in ssh(1) for details.

     Certified user keys allow authentication of users when the signing
     CA key is marked as trusted in authorized_keys. See "AUTHORIZED_KEYS
     FILE FORMAT" in sshd(8) for details.

     Certificates are minted using ssh-keygen(1), documentation is in
     the "CERTIFICATES" section of that manpage.

     Documentation on the format of certificates is in the file
     PROTOCOL.certkeys

     feedback and ok markus@
2010-02-27 07:55:05 +11:00
Darren Tucker
f2e21dec68 - stevesk@cvs.openbsd.org 2008/07/01 23:12:47
[PROTOCOL.agent]
     fix some typos; ok djm@
2008-07-02 22:35:00 +10:00
Darren Tucker
00f00f0451 - djm@cvs.openbsd.org 2008/06/30 08:05:59
[PROTOCOL.agent]
      typo: s/constraint_date/constraint_data/
2008-07-02 22:31:31 +10:00
Damien Miller
1e18beb1e7 - djm@cvs.openbsd.org 2008/06/28 14:08:30
[PROTOCOL PROTOCOL.agent]
     document the protocol used by ssh-agent; "looks ok" markus@
2008-06-30 00:07:00 +10:00