openssh/addr.c

511 lines
10 KiB
C
Raw Normal View History

/* $OpenBSD: addr.c,v 1.9 2024/10/18 04:30:09 djm Exp $ */
/*
* Copyright (c) 2004-2008 Damien Miller <djm@mindrot.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "includes.h"
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include "addr.h"
#define _SA(x) ((struct sockaddr *)(x))
static int
addr_unicast_masklen(int af)
{
switch (af) {
case AF_INET:
return 32;
case AF_INET6:
return 128;
default:
return -1;
}
}
static inline int
masklen_valid(int af, u_int masklen)
{
switch (af) {
case AF_INET:
return masklen <= 32 ? 0 : -1;
case AF_INET6:
return masklen <= 128 ? 0 : -1;
default:
return -1;
}
}
static int
addr_xaddr_to_sa(const struct xaddr *xa, struct sockaddr *sa, socklen_t *len,
u_int16_t port)
{
struct sockaddr_in *in4 = (struct sockaddr_in *)sa;
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)sa;
if (xa == NULL || sa == NULL || len == NULL)
return -1;
switch (xa->af) {
case AF_INET:
if (*len < sizeof(*in4))
return -1;
memset(sa, '\0', sizeof(*in4));
*len = sizeof(*in4);
#ifdef SOCK_HAS_LEN
in4->sin_len = sizeof(*in4);
#endif
in4->sin_family = AF_INET;
in4->sin_port = htons(port);
memcpy(&in4->sin_addr, &xa->v4, sizeof(in4->sin_addr));
break;
case AF_INET6:
if (*len < sizeof(*in6))
return -1;
memset(sa, '\0', sizeof(*in6));
*len = sizeof(*in6);
#ifdef SOCK_HAS_LEN
in6->sin6_len = sizeof(*in6);
#endif
in6->sin6_family = AF_INET6;
in6->sin6_port = htons(port);
memcpy(&in6->sin6_addr, &xa->v6, sizeof(in6->sin6_addr));
#ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID
in6->sin6_scope_id = xa->scope_id;
#endif
break;
default:
return -1;
}
return 0;
}
/*
* Convert struct sockaddr to struct xaddr
* Returns 0 on success, -1 on failure.
*/
int
addr_sa_to_xaddr(struct sockaddr *sa, socklen_t slen, struct xaddr *xa)
{
struct sockaddr_in *in4 = (struct sockaddr_in *)sa;
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)sa;
memset(xa, '\0', sizeof(*xa));
switch (sa->sa_family) {
case AF_INET:
if (slen < (socklen_t)sizeof(*in4))
return -1;
xa->af = AF_INET;
memcpy(&xa->v4, &in4->sin_addr, sizeof(xa->v4));
break;
case AF_INET6:
if (slen < (socklen_t)sizeof(*in6))
return -1;
xa->af = AF_INET6;
memcpy(&xa->v6, &in6->sin6_addr, sizeof(xa->v6));
#ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID
xa->scope_id = in6->sin6_scope_id;
#endif
break;
default:
return -1;
}
return 0;
}
static int
addr_invert(struct xaddr *n)
{
int i;
if (n == NULL)
return -1;
switch (n->af) {
case AF_INET:
n->v4.s_addr = ~n->v4.s_addr;
return 0;
case AF_INET6:
for (i = 0; i < 4; i++)
n->addr32[i] = ~n->addr32[i];
return 0;
default:
return -1;
}
}
/*
* Calculate a netmask of length 'l' for address family 'af' and
* store it in 'n'.
* Returns 0 on success, -1 on failure.
*/
int
addr_netmask(int af, u_int l, struct xaddr *n)
{
int i;
if (masklen_valid(af, l) != 0 || n == NULL)
return -1;
memset(n, '\0', sizeof(*n));
switch (af) {
case AF_INET:
n->af = AF_INET;
if (l == 0)
return 0;
n->v4.s_addr = htonl((0xffffffff << (32 - l)) & 0xffffffff);
return 0;
case AF_INET6:
n->af = AF_INET6;
for (i = 0; i < 4 && l >= 32; i++, l -= 32)
n->addr32[i] = 0xffffffffU;
if (i < 4 && l != 0)
n->addr32[i] = htonl((0xffffffff << (32 - l)) &
0xffffffff);
return 0;
default:
return -1;
}
}
static int
addr_hostmask(int af, u_int l, struct xaddr *n)
{
if (addr_netmask(af, l, n) == -1 || addr_invert(n) == -1)
return -1;
return 0;
}
/*
* Perform logical AND of addresses 'a' and 'b', storing result in 'dst'.
* Returns 0 on success, -1 on failure.
*/
int
addr_and(struct xaddr *dst, const struct xaddr *a, const struct xaddr *b)
{
int i;
if (dst == NULL || a == NULL || b == NULL || a->af != b->af)
return -1;
memcpy(dst, a, sizeof(*dst));
switch (a->af) {
case AF_INET:
dst->v4.s_addr &= b->v4.s_addr;
return 0;
case AF_INET6:
dst->scope_id = a->scope_id;
for (i = 0; i < 4; i++)
dst->addr32[i] &= b->addr32[i];
return 0;
default:
return -1;
}
}
static int
addr_or(struct xaddr *dst, const struct xaddr *a, const struct xaddr *b)
{
int i;
if (dst == NULL || a == NULL || b == NULL || a->af != b->af)
return (-1);
memcpy(dst, a, sizeof(*dst));
switch (a->af) {
case AF_INET:
dst->v4.s_addr |= b->v4.s_addr;
return (0);
case AF_INET6:
for (i = 0; i < 4; i++)
dst->addr32[i] |= b->addr32[i];
return (0);
default:
return (-1);
}
}
int
addr_cmp(const struct xaddr *a, const struct xaddr *b)
{
int i;
if (a->af != b->af)
return (a->af == AF_INET6 ? 1 : -1);
switch (a->af) {
case AF_INET:
/*
* Can't just subtract here as 255.255.255.255 - 0.0.0.0 is
* too big to fit into a signed int
*/
if (a->v4.s_addr == b->v4.s_addr)
return 0;
return (ntohl(a->v4.s_addr) > ntohl(b->v4.s_addr) ? 1 : -1);
case AF_INET6:
/*
* Do this a byte at a time to avoid the above issue and
* any endian problems
*/
for (i = 0; i < 16; i++)
if (a->addr8[i] - b->addr8[i] != 0)
return (a->addr8[i] - b->addr8[i]);
if (a->scope_id == b->scope_id)
return (0);
return (a->scope_id > b->scope_id ? 1 : -1);
default:
return (-1);
}
}
static int
addr_is_all0s(const struct xaddr *a)
{
int i;
switch (a->af) {
case AF_INET:
return (a->v4.s_addr == 0 ? 0 : -1);
case AF_INET6:
for (i = 0; i < 4; i++)
if (a->addr32[i] != 0)
return -1;
return 0;
default:
return -1;
}
}
/* Increment the specified address. Note, does not do overflow checking */
void
addr_increment(struct xaddr *a)
{
int i;
uint32_t n;
switch (a->af) {
case AF_INET:
a->v4.s_addr = htonl(ntohl(a->v4.s_addr) + 1);
break;
case AF_INET6:
for (i = 0; i < 4; i++) {
/* Increment with carry */
n = ntohl(a->addr32[3 - i]) + 1;
a->addr32[3 - i] = htonl(n);
if (n != 0)
break;
}
break;
}
}
/*
* Test whether host portion of address 'a', as determined by 'masklen'
* is all zeros.
* Returns 0 if host portion of address is all-zeros,
* -1 if not all zeros or on failure.
*/
static int
addr_host_is_all0s(const struct xaddr *a, u_int masklen)
{
struct xaddr tmp_addr, tmp_mask, tmp_result;
memcpy(&tmp_addr, a, sizeof(tmp_addr));
if (addr_hostmask(a->af, masklen, &tmp_mask) == -1)
return -1;
if (addr_and(&tmp_result, &tmp_addr, &tmp_mask) == -1)
return -1;
return addr_is_all0s(&tmp_result);
}
#if 0
static int
addr_host_to_all0s(struct xaddr *a, u_int masklen)
{
struct xaddr tmp_mask;
if (addr_netmask(a->af, masklen, &tmp_mask) == -1)
return (-1);
if (addr_and(a, a, &tmp_mask) == -1)
return (-1);
return (0);
}
#endif
int
addr_host_to_all1s(struct xaddr *a, u_int masklen)
{
struct xaddr tmp_mask;
if (addr_hostmask(a->af, masklen, &tmp_mask) == -1)
return (-1);
if (addr_or(a, a, &tmp_mask) == -1)
return (-1);
return (0);
}
/*
* Parse string address 'p' into 'n'.
* Returns 0 on success, -1 on failure.
*/
int
addr_pton(const char *p, struct xaddr *n)
{
struct addrinfo hints, *ai;
memset(&hints, '\0', sizeof(hints));
hints.ai_flags = AI_NUMERICHOST;
if (p == NULL || getaddrinfo(p, NULL, &hints, &ai) != 0)
return -1;
if (ai == NULL)
return -1;
if (ai->ai_addr == NULL) {
freeaddrinfo(ai);
return -1;
}
if (n != NULL && addr_sa_to_xaddr(ai->ai_addr, ai->ai_addrlen,
n) == -1) {
freeaddrinfo(ai);
return -1;
}
freeaddrinfo(ai);
return 0;
}
#if 0
static int
addr_sa_pton(const char *h, const char *s, struct sockaddr *sa, socklen_t slen)
{
struct addrinfo hints, *ai;
memset(&hints, '\0', sizeof(hints));
hints.ai_flags = AI_NUMERICHOST;
if (h == NULL || getaddrinfo(h, s, &hints, &ai) != 0)
return -1;
if (ai == NULL)
return -1;
if (ai->ai_addr == NULL) {
freeaddrinfo(ai);
return -1;
}
if (sa != NULL) {
if (slen < ai->ai_addrlen) {
freeaddrinfo(ai);
return -1;
}
memcpy(sa, &ai->ai_addr, ai->ai_addrlen);
}
freeaddrinfo(ai);
return 0;
}
#endif
int
addr_ntop(const struct xaddr *n, char *p, size_t len)
{
struct sockaddr_storage ss;
socklen_t slen = sizeof(ss);
if (addr_xaddr_to_sa(n, _SA(&ss), &slen, 0) == -1)
return -1;
if (p == NULL || len == 0)
return -1;
if (getnameinfo(_SA(&ss), slen, p, len, NULL, 0,
NI_NUMERICHOST) != 0)
return -1;
return 0;
}
/*
* Parse a CIDR address (x.x.x.x/y or xxxx:yyyy::/z).
* Return -1 on parse error, -2 on inconsistency or 0 on success.
*/
int
addr_pton_cidr(const char *p, struct xaddr *n, u_int *l)
{
struct xaddr tmp;
u_int masklen = 999;
char addrbuf[64], *mp;
const char *errstr;
/* Don't modify argument */
if (p == NULL || strlcpy(addrbuf, p, sizeof(addrbuf)) >= sizeof(addrbuf))
return -1;
if ((mp = strchr(addrbuf, '/')) != NULL) {
*mp = '\0';
mp++;
masklen = (u_int)strtonum(mp, 0, INT_MAX, &errstr);
if (errstr)
return -1;
}
if (addr_pton(addrbuf, &tmp) == -1)
return -1;
if (mp == NULL)
masklen = addr_unicast_masklen(tmp.af);
if (masklen_valid(tmp.af, masklen) == -1)
return -2;
if (addr_host_is_all0s(&tmp, masklen) != 0)
return -2;
if (n != NULL)
memcpy(n, &tmp, sizeof(*n));
if (l != NULL)
*l = masklen;
return 0;
}
int
addr_netmatch(const struct xaddr *host, const struct xaddr *net, u_int masklen)
{
struct xaddr tmp_mask, tmp_result;
if (host->af != net->af)
return -1;
if (addr_netmask(host->af, masklen, &tmp_mask) == -1)
return -1;
if (addr_and(&tmp_result, host, &tmp_mask) == -1)
return -1;
return addr_cmp(&tmp_result, net);
}