netlink/conntrack_linux.go
Rob Murray 084abd93d3 Add ErrDumpInterrupted
Add a specific error to report that a netlink response had
NLM_F_DUMP_INTR set, indicating that the set of results may be
incomplete or inconsistent.

unix.EINTR was previously returned (with no results) when the
NLM_F_DUMP_INTR flag was set. Now, errors.Is(err, unix.EINTR) will
still work. But, this will be a breaking change for any code that's
checking for equality with unix.EINTR.

Return results with ErrDumpInterrupted. Results may be incomplete
or inconsistent, but give the caller the option of using them.

Look for NLM_F_DUMP_INTR in more places:
- linkSubscribeAt, neighSubscribeAt, routeSubscribeAt
  - can do an initial dump, which may report inconsistent results
  -> if there's an error callback, call it with ErrDumpInterrupted
- socketDiagXDPExecutor
  - makes an NLM_F_DUMP request, without using Execute()
  -> give it the same behaviour as functions that do use Execute()

Signed-off-by: Rob Murray <rob.murray@docker.com>
2024-09-22 00:00:40 -07:00

915 lines
31 KiB
Go

package netlink
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"net"
"strings"
"time"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// ConntrackTableType Conntrack table for the netlink operation
type ConntrackTableType uint8
const (
// ConntrackTable Conntrack table
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink.h -> #define NFNL_SUBSYS_CTNETLINK 1
ConntrackTable = 1
// ConntrackExpectTable Conntrack expect table
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink.h -> #define NFNL_SUBSYS_CTNETLINK_EXP 2
ConntrackExpectTable = 2
)
const (
// backward compatibility with golang 1.6 which does not have io.SeekCurrent
seekCurrent = 1
)
// InetFamily Family type
type InetFamily uint8
// -L [table] [options] List conntrack or expectation table
// -G [table] parameters Get conntrack or expectation
// -I [table] parameters Create a conntrack or expectation
// -U [table] parameters Update a conntrack
// -E [table] [options] Show events
// -C [table] Show counter
// -S Show statistics
// ConntrackTableList returns the flow list of a table of a specific family
// conntrack -L [table] [options] List conntrack or expectation table
//
// If the returned error is [ErrDumpInterrupted], results may be inconsistent
// or incomplete.
func ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
return pkgHandle.ConntrackTableList(table, family)
}
// ConntrackTableFlush flushes all the flows of a specified table
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func ConntrackTableFlush(table ConntrackTableType) error {
return pkgHandle.ConntrackTableFlush(table)
}
// ConntrackCreate creates a new conntrack flow in the desired table
// conntrack -I [table] Create a conntrack or expectation
func ConntrackCreate(table ConntrackTableType, family InetFamily, flow *ConntrackFlow) error {
return pkgHandle.ConntrackCreate(table, family, flow)
}
// ConntrackUpdate updates an existing conntrack flow in the desired table using the handle
// conntrack -U [table] Update a conntrack
func ConntrackUpdate(table ConntrackTableType, family InetFamily, flow *ConntrackFlow) error {
return pkgHandle.ConntrackUpdate(table, family, flow)
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter
// conntrack -D [table] parameters Delete conntrack or expectation
//
// Deprecated: use [ConntrackDeleteFilters] instead.
func ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter CustomConntrackFilter) (uint, error) {
return pkgHandle.ConntrackDeleteFilters(table, family, filter)
}
// ConntrackDeleteFilters deletes entries on the specified table matching any of the specified filters
// conntrack -D [table] parameters Delete conntrack or expectation
func ConntrackDeleteFilters(table ConntrackTableType, family InetFamily, filters ...CustomConntrackFilter) (uint, error) {
return pkgHandle.ConntrackDeleteFilters(table, family, filters...)
}
// ConntrackTableList returns the flow list of a table of a specific family using the netlink handle passed
// conntrack -L [table] [options] List conntrack or expectation table
//
// If the returned error is [ErrDumpInterrupted], results may be inconsistent
// or incomplete.
func (h *Handle) ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
res, executeErr := h.dumpConntrackTable(table, family)
if executeErr != nil && !errors.Is(executeErr, ErrDumpInterrupted) {
return nil, executeErr
}
// Deserialize all the flows
var result []*ConntrackFlow
for _, dataRaw := range res {
result = append(result, parseRawData(dataRaw))
}
return result, executeErr
}
// ConntrackTableFlush flushes all the flows of a specified table using the netlink handle passed
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func (h *Handle) ConntrackTableFlush(table ConntrackTableType) error {
req := h.newConntrackRequest(table, unix.AF_INET, nl.IPCTNL_MSG_CT_DELETE, unix.NLM_F_ACK)
_, err := req.Execute(unix.NETLINK_NETFILTER, 0)
return err
}
// ConntrackCreate creates a new conntrack flow in the desired table using the handle
// conntrack -I [table] Create a conntrack or expectation
func (h *Handle) ConntrackCreate(table ConntrackTableType, family InetFamily, flow *ConntrackFlow) error {
req := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_NEW, unix.NLM_F_ACK|unix.NLM_F_CREATE)
attr, err := flow.toNlData()
if err != nil {
return err
}
for _, a := range attr {
req.AddData(a)
}
_, err = req.Execute(unix.NETLINK_NETFILTER, 0)
return err
}
// ConntrackUpdate updates an existing conntrack flow in the desired table using the handle
// conntrack -U [table] Update a conntrack
func (h *Handle) ConntrackUpdate(table ConntrackTableType, family InetFamily, flow *ConntrackFlow) error {
req := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_NEW, unix.NLM_F_ACK|unix.NLM_F_REPLACE)
attr, err := flow.toNlData()
if err != nil {
return err
}
for _, a := range attr {
req.AddData(a)
}
_, err = req.Execute(unix.NETLINK_NETFILTER, 0)
return err
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter using the netlink handle passed
// conntrack -D [table] parameters Delete conntrack or expectation
//
// Deprecated: use [Handle.ConntrackDeleteFilters] instead.
func (h *Handle) ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter CustomConntrackFilter) (uint, error) {
return h.ConntrackDeleteFilters(table, family, filter)
}
// ConntrackDeleteFilters deletes entries on the specified table matching any of the specified filters using the netlink handle passed
// conntrack -D [table] parameters Delete conntrack or expectation
func (h *Handle) ConntrackDeleteFilters(table ConntrackTableType, family InetFamily, filters ...CustomConntrackFilter) (uint, error) {
res, err := h.dumpConntrackTable(table, family)
if err != nil {
return 0, err
}
var matched uint
var errMsgs []string
for _, dataRaw := range res {
flow := parseRawData(dataRaw)
for _, filter := range filters {
if match := filter.MatchConntrackFlow(flow); match {
req2 := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_DELETE, unix.NLM_F_ACK)
// skip the first 4 byte that are the netfilter header, the newConntrackRequest is adding it already
req2.AddRawData(dataRaw[4:])
if _, err = req2.Execute(unix.NETLINK_NETFILTER, 0); err == nil {
matched++
// flow is already deleted, no need to match on other filters and continue to the next flow.
break
}
errMsgs = append(errMsgs, fmt.Sprintf("failed to delete conntrack flow '%s': %s", flow.String(), err.Error()))
}
}
}
if len(errMsgs) > 0 {
return matched, fmt.Errorf(strings.Join(errMsgs, "; "))
}
return matched, nil
}
func (h *Handle) newConntrackRequest(table ConntrackTableType, family InetFamily, operation, flags int) *nl.NetlinkRequest {
// Create the Netlink request object
req := h.newNetlinkRequest((int(table)<<8)|operation, flags)
// Add the netfilter header
msg := &nl.Nfgenmsg{
NfgenFamily: uint8(family),
Version: nl.NFNETLINK_V0,
ResId: 0,
}
req.AddData(msg)
return req
}
func (h *Handle) dumpConntrackTable(table ConntrackTableType, family InetFamily) ([][]byte, error) {
req := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_GET, unix.NLM_F_DUMP)
return req.Execute(unix.NETLINK_NETFILTER, 0)
}
// ProtoInfo wraps an L4-protocol structure - roughly corresponds to the
// __nfct_protoinfo union found in libnetfilter_conntrack/include/internal/object.h.
// Currently, only protocol names, and TCP state is supported.
type ProtoInfo interface {
Protocol() string
}
// ProtoInfoTCP corresponds to the `tcp` struct of the __nfct_protoinfo union.
// Only TCP state is currently supported.
type ProtoInfoTCP struct {
State uint8
}
// Protocol returns "tcp".
func (*ProtoInfoTCP) Protocol() string {return "tcp"}
func (p *ProtoInfoTCP) toNlData() ([]*nl.RtAttr, error) {
ctProtoInfo := nl.NewRtAttr(unix.NLA_F_NESTED | nl.CTA_PROTOINFO, []byte{})
ctProtoInfoTCP := nl.NewRtAttr(unix.NLA_F_NESTED|nl.CTA_PROTOINFO_TCP, []byte{})
ctProtoInfoTCPState := nl.NewRtAttr(nl.CTA_PROTOINFO_TCP_STATE, nl.Uint8Attr(p.State))
ctProtoInfoTCP.AddChild(ctProtoInfoTCPState)
ctProtoInfo.AddChild(ctProtoInfoTCP)
return []*nl.RtAttr{ctProtoInfo}, nil
}
// ProtoInfoSCTP only supports the protocol name.
type ProtoInfoSCTP struct {}
// Protocol returns "sctp".
func (*ProtoInfoSCTP) Protocol() string {return "sctp"}
// ProtoInfoDCCP only supports the protocol name.
type ProtoInfoDCCP struct {}
// Protocol returns "dccp".
func (*ProtoInfoDCCP) Protocol() string {return "dccp"}
// The full conntrack flow structure is very complicated and can be found in the file:
// http://git.netfilter.org/libnetfilter_conntrack/tree/include/internal/object.h
// For the time being, the structure below allows to parse and extract the base information of a flow
type IPTuple struct {
Bytes uint64
DstIP net.IP
DstPort uint16
Packets uint64
Protocol uint8
SrcIP net.IP
SrcPort uint16
}
// toNlData generates the inner fields of a nested tuple netlink datastructure
// does not generate the "nested"-flagged outer message.
func (t *IPTuple) toNlData(family uint8) ([]*nl.RtAttr, error) {
var srcIPsFlag, dstIPsFlag int
if family == nl.FAMILY_V4 {
srcIPsFlag = nl.CTA_IP_V4_SRC
dstIPsFlag = nl.CTA_IP_V4_DST
} else if family == nl.FAMILY_V6 {
srcIPsFlag = nl.CTA_IP_V6_SRC
dstIPsFlag = nl.CTA_IP_V6_DST
} else {
return []*nl.RtAttr{}, fmt.Errorf("couldn't generate netlink message for tuple due to unrecognized FamilyType '%d'", family)
}
ctTupleIP := nl.NewRtAttr(unix.NLA_F_NESTED|nl.CTA_TUPLE_IP, nil)
ctTupleIPSrc := nl.NewRtAttr(srcIPsFlag, t.SrcIP)
ctTupleIP.AddChild(ctTupleIPSrc)
ctTupleIPDst := nl.NewRtAttr(dstIPsFlag, t.DstIP)
ctTupleIP.AddChild(ctTupleIPDst)
ctTupleProto := nl.NewRtAttr(unix.NLA_F_NESTED|nl.CTA_TUPLE_PROTO, nil)
ctTupleProtoNum := nl.NewRtAttr(nl.CTA_PROTO_NUM, []byte{t.Protocol})
ctTupleProto.AddChild(ctTupleProtoNum)
ctTupleProtoSrcPort := nl.NewRtAttr(nl.CTA_PROTO_SRC_PORT, nl.BEUint16Attr(t.SrcPort))
ctTupleProto.AddChild(ctTupleProtoSrcPort)
ctTupleProtoDstPort := nl.NewRtAttr(nl.CTA_PROTO_DST_PORT, nl.BEUint16Attr(t.DstPort))
ctTupleProto.AddChild(ctTupleProtoDstPort, )
return []*nl.RtAttr{ctTupleIP, ctTupleProto}, nil
}
type ConntrackFlow struct {
FamilyType uint8
Forward IPTuple
Reverse IPTuple
Mark uint32
Zone uint16
TimeStart uint64
TimeStop uint64
TimeOut uint32
Labels []byte
ProtoInfo ProtoInfo
}
func (s *ConntrackFlow) String() string {
// conntrack cmd output:
// udp 17 src=127.0.0.1 dst=127.0.0.1 sport=4001 dport=1234 packets=5 bytes=532 [UNREPLIED] src=127.0.0.1 dst=127.0.0.1 sport=1234 dport=4001 packets=10 bytes=1078 mark=0 labels=0x00000000050012ac4202010000000000 zone=100
// start=2019-07-26 01:26:21.557800506 +0000 UTC stop=1970-01-01 00:00:00 +0000 UTC timeout=30(sec)
start := time.Unix(0, int64(s.TimeStart))
stop := time.Unix(0, int64(s.TimeStop))
timeout := int32(s.TimeOut)
res := fmt.Sprintf("%s\t%d src=%s dst=%s sport=%d dport=%d packets=%d bytes=%d\tsrc=%s dst=%s sport=%d dport=%d packets=%d bytes=%d mark=0x%x ",
nl.L4ProtoMap[s.Forward.Protocol], s.Forward.Protocol,
s.Forward.SrcIP.String(), s.Forward.DstIP.String(), s.Forward.SrcPort, s.Forward.DstPort, s.Forward.Packets, s.Forward.Bytes,
s.Reverse.SrcIP.String(), s.Reverse.DstIP.String(), s.Reverse.SrcPort, s.Reverse.DstPort, s.Reverse.Packets, s.Reverse.Bytes,
s.Mark)
if len(s.Labels) > 0 {
res += fmt.Sprintf("labels=0x%x ", s.Labels)
}
if s.Zone != 0 {
res += fmt.Sprintf("zone=%d ", s.Zone)
}
res += fmt.Sprintf("start=%v stop=%v timeout=%d(sec)", start, stop, timeout)
return res
}
// toNlData generates netlink messages representing the flow.
func (s *ConntrackFlow) toNlData() ([]*nl.RtAttr, error) {
var payload []*nl.RtAttr
// The message structure is built as follows:
// <len, NLA_F_NESTED|CTA_TUPLE_ORIG>
// <len, NLA_F_NESTED|CTA_TUPLE_IP>
// <len, [CTA_IP_V4_SRC|CTA_IP_V6_SRC]>
// <IP>
// <len, [CTA_IP_V4_DST|CTA_IP_V6_DST]>
// <IP>
// <len, NLA_F_NESTED|nl.CTA_TUPLE_PROTO>
// <len, CTA_PROTO_NUM>
// <uint8>
// <len, CTA_PROTO_SRC_PORT>
// <BEuint16>
// <len, CTA_PROTO_DST_PORT>
// <BEuint16>
// <len, NLA_F_NESTED|CTA_TUPLE_REPLY>
// <len, NLA_F_NESTED|CTA_TUPLE_IP>
// <len, [CTA_IP_V4_SRC|CTA_IP_V6_SRC]>
// <IP>
// <len, [CTA_IP_V4_DST|CTA_IP_V6_DST]>
// <IP>
// <len, NLA_F_NESTED|nl.CTA_TUPLE_PROTO>
// <len, CTA_PROTO_NUM>
// <uint8>
// <len, CTA_PROTO_SRC_PORT>
// <BEuint16>
// <len, CTA_PROTO_DST_PORT>
// <BEuint16>
// <len, CTA_STATUS>
// <uint64>
// <len, CTA_MARK>
// <BEuint64>
// <len, CTA_TIMEOUT>
// <BEuint64>
// <len, NLA_F_NESTED|CTA_PROTOINFO>
// CTA_TUPLE_ORIG
ctTupleOrig := nl.NewRtAttr(unix.NLA_F_NESTED|nl.CTA_TUPLE_ORIG, nil)
forwardFlowAttrs, err := s.Forward.toNlData(s.FamilyType)
if err != nil {
return nil, fmt.Errorf("couldn't generate netlink data for conntrack forward flow: %w", err)
}
for _, a := range forwardFlowAttrs {
ctTupleOrig.AddChild(a)
}
// CTA_TUPLE_REPLY
ctTupleReply := nl.NewRtAttr(unix.NLA_F_NESTED|nl.CTA_TUPLE_REPLY, nil)
reverseFlowAttrs, err := s.Reverse.toNlData(s.FamilyType)
if err != nil {
return nil, fmt.Errorf("couldn't generate netlink data for conntrack reverse flow: %w", err)
}
for _, a := range reverseFlowAttrs {
ctTupleReply.AddChild(a)
}
ctMark := nl.NewRtAttr(nl.CTA_MARK, nl.BEUint32Attr(s.Mark))
ctTimeout := nl.NewRtAttr(nl.CTA_TIMEOUT, nl.BEUint32Attr(s.TimeOut))
payload = append(payload, ctTupleOrig, ctTupleReply, ctMark, ctTimeout)
if s.ProtoInfo != nil {
switch p := s.ProtoInfo.(type) {
case *ProtoInfoTCP:
attrs, err := p.toNlData()
if err != nil {
return nil, fmt.Errorf("couldn't generate netlink data for conntrack flow's TCP protoinfo: %w", err)
}
payload = append(payload, attrs...)
default:
return nil, errors.New("couldn't generate netlink data for conntrack: field 'ProtoInfo' only supports TCP or nil")
}
}
return payload, nil
}
// This method parse the ip tuple structure
// The message structure is the following:
// <len, [CTA_IP_V4_SRC|CTA_IP_V6_SRC], 16 bytes for the IP>
// <len, [CTA_IP_V4_DST|CTA_IP_V6_DST], 16 bytes for the IP>
// <len, NLA_F_NESTED|nl.CTA_TUPLE_PROTO, 1 byte for the protocol, 3 bytes of padding>
// <len, CTA_PROTO_SRC_PORT, 2 bytes for the source port, 2 bytes of padding>
// <len, CTA_PROTO_DST_PORT, 2 bytes for the source port, 2 bytes of padding>
func parseIpTuple(reader *bytes.Reader, tpl *IPTuple) uint8 {
for i := 0; i < 2; i++ {
_, t, _, v := parseNfAttrTLV(reader)
switch t {
case nl.CTA_IP_V4_SRC, nl.CTA_IP_V6_SRC:
tpl.SrcIP = v
case nl.CTA_IP_V4_DST, nl.CTA_IP_V6_DST:
tpl.DstIP = v
}
}
// Get total length of nested protocol-specific info.
_, _, protoInfoTotalLen := parseNfAttrTL(reader)
_, t, l, v := parseNfAttrTLV(reader)
// Track the number of bytes read.
protoInfoBytesRead := uint16(nl.SizeofNfattr) + l
if t == nl.CTA_PROTO_NUM {
tpl.Protocol = uint8(v[0])
}
// We only parse TCP & UDP headers. Skip the others.
if tpl.Protocol != unix.IPPROTO_TCP && tpl.Protocol != unix.IPPROTO_UDP {
// skip the rest
bytesRemaining := protoInfoTotalLen - protoInfoBytesRead
reader.Seek(int64(bytesRemaining), seekCurrent)
return tpl.Protocol
}
// Skip 3 bytes of padding
reader.Seek(3, seekCurrent)
protoInfoBytesRead += 3
for i := 0; i < 2; i++ {
_, t, _ := parseNfAttrTL(reader)
protoInfoBytesRead += uint16(nl.SizeofNfattr)
switch t {
case nl.CTA_PROTO_SRC_PORT:
parseBERaw16(reader, &tpl.SrcPort)
protoInfoBytesRead += 2
case nl.CTA_PROTO_DST_PORT:
parseBERaw16(reader, &tpl.DstPort)
protoInfoBytesRead += 2
}
// Skip 2 bytes of padding
reader.Seek(2, seekCurrent)
protoInfoBytesRead += 2
}
// Skip any remaining/unknown parts of the message
bytesRemaining := protoInfoTotalLen - protoInfoBytesRead
reader.Seek(int64(bytesRemaining), seekCurrent)
return tpl.Protocol
}
func parseNfAttrTLV(r *bytes.Reader) (isNested bool, attrType, len uint16, value []byte) {
isNested, attrType, len = parseNfAttrTL(r)
value = make([]byte, len)
binary.Read(r, binary.BigEndian, &value)
return isNested, attrType, len, value
}
func parseNfAttrTL(r *bytes.Reader) (isNested bool, attrType, len uint16) {
binary.Read(r, nl.NativeEndian(), &len)
len -= nl.SizeofNfattr
binary.Read(r, nl.NativeEndian(), &attrType)
isNested = (attrType & nl.NLA_F_NESTED) == nl.NLA_F_NESTED
attrType = attrType & (nl.NLA_F_NESTED - 1)
return isNested, attrType, len
}
// skipNfAttrValue seeks `r` past attr of length `len`.
// Maintains buffer alignment.
// Returns length of the seek performed.
func skipNfAttrValue(r *bytes.Reader, len uint16) uint16 {
len = (len + nl.NLA_ALIGNTO - 1) & ^(nl.NLA_ALIGNTO - 1)
r.Seek(int64(len), seekCurrent)
return len
}
func parseBERaw16(r *bytes.Reader, v *uint16) {
binary.Read(r, binary.BigEndian, v)
}
func parseBERaw32(r *bytes.Reader, v *uint32) {
binary.Read(r, binary.BigEndian, v)
}
func parseBERaw64(r *bytes.Reader, v *uint64) {
binary.Read(r, binary.BigEndian, v)
}
func parseRaw32(r *bytes.Reader, v *uint32) {
binary.Read(r, nl.NativeEndian(), v)
}
func parseByteAndPacketCounters(r *bytes.Reader) (bytes, packets uint64) {
for i := 0; i < 2; i++ {
switch _, t, _ := parseNfAttrTL(r); t {
case nl.CTA_COUNTERS_BYTES:
parseBERaw64(r, &bytes)
case nl.CTA_COUNTERS_PACKETS:
parseBERaw64(r, &packets)
default:
return
}
}
return
}
// when the flow is alive, only the timestamp_start is returned in structure
func parseTimeStamp(r *bytes.Reader, readSize uint16) (tstart, tstop uint64) {
var numTimeStamps int
oneItem := nl.SizeofNfattr + 8 // 4 bytes attr header + 8 bytes timestamp
if readSize == uint16(oneItem) {
numTimeStamps = 1
} else if readSize == 2*uint16(oneItem) {
numTimeStamps = 2
} else {
return
}
for i := 0; i < numTimeStamps; i++ {
switch _, t, _ := parseNfAttrTL(r); t {
case nl.CTA_TIMESTAMP_START:
parseBERaw64(r, &tstart)
case nl.CTA_TIMESTAMP_STOP:
parseBERaw64(r, &tstop)
default:
return
}
}
return
}
func parseProtoInfoTCPState(r *bytes.Reader) (s uint8) {
binary.Read(r, binary.BigEndian, &s)
r.Seek(nl.SizeofNfattr - 1, seekCurrent)
return s
}
// parseProtoInfoTCP reads the entire nested protoinfo structure, but only parses the state attr.
func parseProtoInfoTCP(r *bytes.Reader, attrLen uint16) (*ProtoInfoTCP) {
p := new(ProtoInfoTCP)
bytesRead := 0
for bytesRead < int(attrLen) {
_, t, l := parseNfAttrTL(r)
bytesRead += nl.SizeofNfattr
switch t {
case nl.CTA_PROTOINFO_TCP_STATE:
p.State = parseProtoInfoTCPState(r)
bytesRead += nl.SizeofNfattr
default:
bytesRead += int(skipNfAttrValue(r, l))
}
}
return p
}
func parseProtoInfo(r *bytes.Reader, attrLen uint16) (p ProtoInfo) {
bytesRead := 0
for bytesRead < int(attrLen) {
_, t, l := parseNfAttrTL(r)
bytesRead += nl.SizeofNfattr
switch t {
case nl.CTA_PROTOINFO_TCP:
p = parseProtoInfoTCP(r, l)
bytesRead += int(l)
// No inner fields of DCCP / SCTP currently supported.
case nl.CTA_PROTOINFO_DCCP:
p = new(ProtoInfoDCCP)
skipped := skipNfAttrValue(r, l)
bytesRead += int(skipped)
case nl.CTA_PROTOINFO_SCTP:
p = new(ProtoInfoSCTP)
skipped := skipNfAttrValue(r, l)
bytesRead += int(skipped)
default:
skipped := skipNfAttrValue(r, l)
bytesRead += int(skipped)
}
}
return p
}
func parseTimeOut(r *bytes.Reader) (ttimeout uint32) {
parseBERaw32(r, &ttimeout)
return
}
func parseConnectionMark(r *bytes.Reader) (mark uint32) {
parseBERaw32(r, &mark)
return
}
func parseConnectionLabels(r *bytes.Reader) (label []byte) {
label = make([]byte, 16) // netfilter defines 128 bit labels value
binary.Read(r, nl.NativeEndian(), &label)
return
}
func parseConnectionZone(r *bytes.Reader) (zone uint16) {
parseBERaw16(r, &zone)
r.Seek(2, seekCurrent)
return
}
func parseRawData(data []byte) *ConntrackFlow {
s := &ConntrackFlow{}
// First there is the Nfgenmsg header
// consume only the family field
reader := bytes.NewReader(data)
binary.Read(reader, nl.NativeEndian(), &s.FamilyType)
// skip rest of the Netfilter header
reader.Seek(3, seekCurrent)
// The message structure is the following:
// <len, NLA_F_NESTED|CTA_TUPLE_ORIG> 4 bytes
// <len, NLA_F_NESTED|CTA_TUPLE_IP> 4 bytes
// flow information of the forward flow
// <len, NLA_F_NESTED|CTA_TUPLE_REPLY> 4 bytes
// <len, NLA_F_NESTED|CTA_TUPLE_IP> 4 bytes
// flow information of the reverse flow
for reader.Len() > 0 {
if nested, t, l := parseNfAttrTL(reader); nested {
switch t {
case nl.CTA_TUPLE_ORIG:
if nested, t, l = parseNfAttrTL(reader); nested && t == nl.CTA_TUPLE_IP {
parseIpTuple(reader, &s.Forward)
}
case nl.CTA_TUPLE_REPLY:
if nested, t, l = parseNfAttrTL(reader); nested && t == nl.CTA_TUPLE_IP {
parseIpTuple(reader, &s.Reverse)
} else {
// Header not recognized skip it
skipNfAttrValue(reader, l)
}
case nl.CTA_COUNTERS_ORIG:
s.Forward.Bytes, s.Forward.Packets = parseByteAndPacketCounters(reader)
case nl.CTA_COUNTERS_REPLY:
s.Reverse.Bytes, s.Reverse.Packets = parseByteAndPacketCounters(reader)
case nl.CTA_TIMESTAMP:
s.TimeStart, s.TimeStop = parseTimeStamp(reader, l)
case nl.CTA_PROTOINFO:
s.ProtoInfo = parseProtoInfo(reader, l)
default:
skipNfAttrValue(reader, l)
}
} else {
switch t {
case nl.CTA_MARK:
s.Mark = parseConnectionMark(reader)
case nl.CTA_LABELS:
s.Labels = parseConnectionLabels(reader)
case nl.CTA_TIMEOUT:
s.TimeOut = parseTimeOut(reader)
case nl.CTA_ID, nl.CTA_STATUS, nl.CTA_USE:
skipNfAttrValue(reader, l)
case nl.CTA_ZONE:
s.Zone = parseConnectionZone(reader)
default:
skipNfAttrValue(reader, l)
}
}
}
return s
}
// Conntrack parameters and options:
// -n, --src-nat ip source NAT ip
// -g, --dst-nat ip destination NAT ip
// -j, --any-nat ip source or destination NAT ip
// -m, --mark mark Set mark
// -c, --secmark secmark Set selinux secmark
// -e, --event-mask eventmask Event mask, eg. NEW,DESTROY
// -z, --zero Zero counters while listing
// -o, --output type[,...] Output format, eg. xml
// -l, --label label[,...] conntrack labels
// Common parameters and options:
// -s, --src, --orig-src ip Source address from original direction
// -d, --dst, --orig-dst ip Destination address from original direction
// -r, --reply-src ip Source address from reply direction
// -q, --reply-dst ip Destination address from reply direction
// -p, --protonum proto Layer 4 Protocol, eg. 'tcp'
// -f, --family proto Layer 3 Protocol, eg. 'ipv6'
// -t, --timeout timeout Set timeout
// -u, --status status Set status, eg. ASSURED
// -w, --zone value Set conntrack zone
// --orig-zone value Set zone for original direction
// --reply-zone value Set zone for reply direction
// -b, --buffer-size Netlink socket buffer size
// --mask-src ip Source mask address
// --mask-dst ip Destination mask address
// Layer 4 Protocol common parameters and options:
// TCP, UDP, SCTP, UDPLite and DCCP
// --sport, --orig-port-src port Source port in original direction
// --dport, --orig-port-dst port Destination port in original direction
// Filter types
type ConntrackFilterType uint8
const (
ConntrackOrigSrcIP = iota // -orig-src ip Source address from original direction
ConntrackOrigDstIP // -orig-dst ip Destination address from original direction
ConntrackReplySrcIP // --reply-src ip Reply Source IP
ConntrackReplyDstIP // --reply-dst ip Reply Destination IP
ConntrackReplyAnyIP // Match source or destination reply IP
ConntrackOrigSrcPort // --orig-port-src port Source port in original direction
ConntrackOrigDstPort // --orig-port-dst port Destination port in original direction
ConntrackMatchLabels // --label label1,label2 Labels used in entry
ConntrackUnmatchLabels // --label label1,label2 Labels not used in entry
ConntrackNatSrcIP = ConntrackReplySrcIP // deprecated use instead ConntrackReplySrcIP
ConntrackNatDstIP = ConntrackReplyDstIP // deprecated use instead ConntrackReplyDstIP
ConntrackNatAnyIP = ConntrackReplyAnyIP // deprecated use instead ConntrackReplyAnyIP
)
type CustomConntrackFilter interface {
// MatchConntrackFlow applies the filter to the flow and returns true if the flow matches
// the filter or false otherwise
MatchConntrackFlow(flow *ConntrackFlow) bool
}
type ConntrackFilter struct {
ipNetFilter map[ConntrackFilterType]*net.IPNet
portFilter map[ConntrackFilterType]uint16
protoFilter uint8
labelFilter map[ConntrackFilterType][][]byte
zoneFilter *uint16
}
// AddIPNet adds a IP subnet to the conntrack filter
func (f *ConntrackFilter) AddIPNet(tp ConntrackFilterType, ipNet *net.IPNet) error {
if ipNet == nil {
return fmt.Errorf("Filter attribute empty")
}
if f.ipNetFilter == nil {
f.ipNetFilter = make(map[ConntrackFilterType]*net.IPNet)
}
if _, ok := f.ipNetFilter[tp]; ok {
return errors.New("Filter attribute already present")
}
f.ipNetFilter[tp] = ipNet
return nil
}
// AddIP adds an IP to the conntrack filter
func (f *ConntrackFilter) AddIP(tp ConntrackFilterType, ip net.IP) error {
if ip == nil {
return fmt.Errorf("Filter attribute empty")
}
return f.AddIPNet(tp, NewIPNet(ip))
}
// AddPort adds a Port to the conntrack filter if the Layer 4 protocol allows it
func (f *ConntrackFilter) AddPort(tp ConntrackFilterType, port uint16) error {
switch f.protoFilter {
// TCP, UDP, DCCP, SCTP, UDPLite
case 6, 17, 33, 132, 136:
default:
return fmt.Errorf("Filter attribute not available without a valid Layer 4 protocol: %d", f.protoFilter)
}
if f.portFilter == nil {
f.portFilter = make(map[ConntrackFilterType]uint16)
}
if _, ok := f.portFilter[tp]; ok {
return errors.New("Filter attribute already present")
}
f.portFilter[tp] = port
return nil
}
// AddProtocol adds the Layer 4 protocol to the conntrack filter
func (f *ConntrackFilter) AddProtocol(proto uint8) error {
if f.protoFilter != 0 {
return errors.New("Filter attribute already present")
}
f.protoFilter = proto
return nil
}
// AddLabels adds the provided list (zero or more) of labels to the conntrack filter
// ConntrackFilterType here can be either:
// 1. ConntrackMatchLabels: This matches every flow that has a label value (len(flow.Labels) > 0)
// against the list of provided labels. If `flow.Labels` contains ALL the provided labels
// it is considered a match. This can be used when you want to match flows that contain
// one or more labels.
// 2. ConntrackUnmatchLabels: This matches every flow that has a label value (len(flow.Labels) > 0)
// against the list of provided labels. If `flow.Labels` does NOT contain ALL the provided labels
// it is considered a match. This can be used when you want to match flows that don't contain
// one or more labels.
func (f *ConntrackFilter) AddLabels(tp ConntrackFilterType, labels [][]byte) error {
if len(labels) == 0 {
return errors.New("Invalid length for provided labels")
}
if f.labelFilter == nil {
f.labelFilter = make(map[ConntrackFilterType][][]byte)
}
if _, ok := f.labelFilter[tp]; ok {
return errors.New("Filter attribute already present")
}
f.labelFilter[tp] = labels
return nil
}
// AddZone adds a zone to the conntrack filter
func (f *ConntrackFilter) AddZone(zone uint16) error {
if f.zoneFilter != nil {
return errors.New("Filter attribute already present")
}
f.zoneFilter = &zone
return nil
}
// MatchConntrackFlow applies the filter to the flow and returns true if the flow matches the filter
// false otherwise
func (f *ConntrackFilter) MatchConntrackFlow(flow *ConntrackFlow) bool {
if len(f.ipNetFilter) == 0 && len(f.portFilter) == 0 && f.protoFilter == 0 && len(f.labelFilter) == 0 && f.zoneFilter == nil {
// empty filter always not match
return false
}
// -p, --protonum proto Layer 4 Protocol, eg. 'tcp'
if f.protoFilter != 0 && flow.Forward.Protocol != f.protoFilter {
// different Layer 4 protocol always not match
return false
}
// Conntrack zone filter
if f.zoneFilter != nil && *f.zoneFilter != flow.Zone {
return false
}
match := true
// IP conntrack filter
if len(f.ipNetFilter) > 0 {
// -orig-src ip Source address from original direction
if elem, found := f.ipNetFilter[ConntrackOrigSrcIP]; found {
match = match && elem.Contains(flow.Forward.SrcIP)
}
// -orig-dst ip Destination address from original direction
if elem, found := f.ipNetFilter[ConntrackOrigDstIP]; match && found {
match = match && elem.Contains(flow.Forward.DstIP)
}
// -src-nat ip Source NAT ip
if elem, found := f.ipNetFilter[ConntrackReplySrcIP]; match && found {
match = match && elem.Contains(flow.Reverse.SrcIP)
}
// -dst-nat ip Destination NAT ip
if elem, found := f.ipNetFilter[ConntrackReplyDstIP]; match && found {
match = match && elem.Contains(flow.Reverse.DstIP)
}
// Match source or destination reply IP
if elem, found := f.ipNetFilter[ConntrackReplyAnyIP]; match && found {
match = match && (elem.Contains(flow.Reverse.SrcIP) || elem.Contains(flow.Reverse.DstIP))
}
}
// Layer 4 Port filter
if len(f.portFilter) > 0 {
// -orig-port-src port Source port from original direction
if elem, found := f.portFilter[ConntrackOrigSrcPort]; match && found {
match = match && elem == flow.Forward.SrcPort
}
// -orig-port-dst port Destination port from original direction
if elem, found := f.portFilter[ConntrackOrigDstPort]; match && found {
match = match && elem == flow.Forward.DstPort
}
}
// Label filter
if len(f.labelFilter) > 0 {
if len(flow.Labels) > 0 {
// --label label1,label2 in conn entry;
// every label passed should be contained in flow.Labels for a match to be true
if elem, found := f.labelFilter[ConntrackMatchLabels]; match && found {
for _, label := range elem {
match = match && (bytes.Contains(flow.Labels, label))
}
}
// --label label1,label2 in conn entry;
// every label passed should be not contained in flow.Labels for a match to be true
if elem, found := f.labelFilter[ConntrackUnmatchLabels]; match && found {
for _, label := range elem {
match = match && !(bytes.Contains(flow.Labels, label))
}
}
} else {
// flow doesn't contain labels, so it doesn't contain or notContain any provided matches
match = false
}
}
return match
}
var _ CustomConntrackFilter = (*ConntrackFilter)(nil)