netlink/qdisc_linux.go
Rob Murray 084abd93d3 Add ErrDumpInterrupted
Add a specific error to report that a netlink response had
NLM_F_DUMP_INTR set, indicating that the set of results may be
incomplete or inconsistent.

unix.EINTR was previously returned (with no results) when the
NLM_F_DUMP_INTR flag was set. Now, errors.Is(err, unix.EINTR) will
still work. But, this will be a breaking change for any code that's
checking for equality with unix.EINTR.

Return results with ErrDumpInterrupted. Results may be incomplete
or inconsistent, but give the caller the option of using them.

Look for NLM_F_DUMP_INTR in more places:
- linkSubscribeAt, neighSubscribeAt, routeSubscribeAt
  - can do an initial dump, which may report inconsistent results
  -> if there's an error callback, call it with ErrDumpInterrupted
- socketDiagXDPExecutor
  - makes an NLM_F_DUMP request, without using Execute()
  -> give it the same behaviour as functions that do use Execute()

Signed-off-by: Rob Murray <rob.murray@docker.com>
2024-09-22 00:00:40 -07:00

796 lines
21 KiB
Go

package netlink
import (
"errors"
"fmt"
"io/ioutil"
"strconv"
"strings"
"sync"
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// NOTE function is here because it uses other linux functions
func NewNetem(attrs QdiscAttrs, nattrs NetemQdiscAttrs) *Netem {
var limit uint32 = 1000
var lossCorr, delayCorr, duplicateCorr uint32
var reorderProb, reorderCorr uint32
var corruptProb, corruptCorr uint32
var rate64 uint64
latency := nattrs.Latency
loss := Percentage2u32(nattrs.Loss)
gap := nattrs.Gap
duplicate := Percentage2u32(nattrs.Duplicate)
jitter := nattrs.Jitter
// Correlation
if latency > 0 && jitter > 0 {
delayCorr = Percentage2u32(nattrs.DelayCorr)
}
if loss > 0 {
lossCorr = Percentage2u32(nattrs.LossCorr)
}
if duplicate > 0 {
duplicateCorr = Percentage2u32(nattrs.DuplicateCorr)
}
// FIXME should validate values(like loss/duplicate are percentages...)
latency = time2Tick(latency)
if nattrs.Limit != 0 {
limit = nattrs.Limit
}
// Jitter is only value if latency is > 0
if latency > 0 {
jitter = time2Tick(jitter)
}
reorderProb = Percentage2u32(nattrs.ReorderProb)
reorderCorr = Percentage2u32(nattrs.ReorderCorr)
if reorderProb > 0 {
// ERROR if lantency == 0
if gap == 0 {
gap = 1
}
}
corruptProb = Percentage2u32(nattrs.CorruptProb)
corruptCorr = Percentage2u32(nattrs.CorruptCorr)
rate64 = nattrs.Rate64
return &Netem{
QdiscAttrs: attrs,
Latency: latency,
DelayCorr: delayCorr,
Limit: limit,
Loss: loss,
LossCorr: lossCorr,
Gap: gap,
Duplicate: duplicate,
DuplicateCorr: duplicateCorr,
Jitter: jitter,
ReorderProb: reorderProb,
ReorderCorr: reorderCorr,
CorruptProb: corruptProb,
CorruptCorr: corruptCorr,
Rate64: rate64,
}
}
// QdiscDel will delete a qdisc from the system.
// Equivalent to: `tc qdisc del $qdisc`
func QdiscDel(qdisc Qdisc) error {
return pkgHandle.QdiscDel(qdisc)
}
// QdiscDel will delete a qdisc from the system.
// Equivalent to: `tc qdisc del $qdisc`
func (h *Handle) QdiscDel(qdisc Qdisc) error {
return h.qdiscModify(unix.RTM_DELQDISC, 0, qdisc)
}
// QdiscChange will change a qdisc in place
// Equivalent to: `tc qdisc change $qdisc`
// The parent and handle MUST NOT be changed.
func QdiscChange(qdisc Qdisc) error {
return pkgHandle.QdiscChange(qdisc)
}
// QdiscChange will change a qdisc in place
// Equivalent to: `tc qdisc change $qdisc`
// The parent and handle MUST NOT be changed.
func (h *Handle) QdiscChange(qdisc Qdisc) error {
return h.qdiscModify(unix.RTM_NEWQDISC, 0, qdisc)
}
// QdiscReplace will replace a qdisc to the system.
// Equivalent to: `tc qdisc replace $qdisc`
// The handle MUST change.
func QdiscReplace(qdisc Qdisc) error {
return pkgHandle.QdiscReplace(qdisc)
}
// QdiscReplace will replace a qdisc to the system.
// Equivalent to: `tc qdisc replace $qdisc`
// The handle MUST change.
func (h *Handle) QdiscReplace(qdisc Qdisc) error {
return h.qdiscModify(
unix.RTM_NEWQDISC,
unix.NLM_F_CREATE|unix.NLM_F_REPLACE,
qdisc)
}
// QdiscAdd will add a qdisc to the system.
// Equivalent to: `tc qdisc add $qdisc`
func QdiscAdd(qdisc Qdisc) error {
return pkgHandle.QdiscAdd(qdisc)
}
// QdiscAdd will add a qdisc to the system.
// Equivalent to: `tc qdisc add $qdisc`
func (h *Handle) QdiscAdd(qdisc Qdisc) error {
return h.qdiscModify(
unix.RTM_NEWQDISC,
unix.NLM_F_CREATE|unix.NLM_F_EXCL,
qdisc)
}
func (h *Handle) qdiscModify(cmd, flags int, qdisc Qdisc) error {
req := h.newNetlinkRequest(cmd, flags|unix.NLM_F_ACK)
base := qdisc.Attrs()
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Ifindex: int32(base.LinkIndex),
Handle: base.Handle,
Parent: base.Parent,
}
req.AddData(msg)
// When deleting don't bother building the rest of the netlink payload
if cmd != unix.RTM_DELQDISC {
if err := qdiscPayload(req, qdisc); err != nil {
return err
}
}
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func qdiscPayload(req *nl.NetlinkRequest, qdisc Qdisc) error {
req.AddData(nl.NewRtAttr(nl.TCA_KIND, nl.ZeroTerminated(qdisc.Type())))
if qdisc.Attrs().IngressBlock != nil {
req.AddData(nl.NewRtAttr(nl.TCA_INGRESS_BLOCK, nl.Uint32Attr(*qdisc.Attrs().IngressBlock)))
}
options := nl.NewRtAttr(nl.TCA_OPTIONS, nil)
switch qdisc := qdisc.(type) {
case *Prio:
tcmap := nl.TcPrioMap{
Bands: int32(qdisc.Bands),
Priomap: qdisc.PriorityMap,
}
options = nl.NewRtAttr(nl.TCA_OPTIONS, tcmap.Serialize())
case *Tbf:
opt := nl.TcTbfQopt{}
opt.Rate.Rate = uint32(qdisc.Rate)
opt.Peakrate.Rate = uint32(qdisc.Peakrate)
opt.Limit = qdisc.Limit
opt.Buffer = qdisc.Buffer
options.AddRtAttr(nl.TCA_TBF_PARMS, opt.Serialize())
if qdisc.Rate >= uint64(1<<32) {
options.AddRtAttr(nl.TCA_TBF_RATE64, nl.Uint64Attr(qdisc.Rate))
}
if qdisc.Peakrate >= uint64(1<<32) {
options.AddRtAttr(nl.TCA_TBF_PRATE64, nl.Uint64Attr(qdisc.Peakrate))
}
if qdisc.Peakrate > 0 {
options.AddRtAttr(nl.TCA_TBF_PBURST, nl.Uint32Attr(qdisc.Minburst))
}
case *Htb:
opt := nl.TcHtbGlob{}
opt.Version = qdisc.Version
opt.Rate2Quantum = qdisc.Rate2Quantum
opt.Defcls = qdisc.Defcls
// TODO: Handle Debug properly. For now default to 0
opt.Debug = qdisc.Debug
opt.DirectPkts = qdisc.DirectPkts
options.AddRtAttr(nl.TCA_HTB_INIT, opt.Serialize())
if qdisc.DirectQlen != nil {
options.AddRtAttr(nl.TCA_HTB_DIRECT_QLEN, nl.Uint32Attr(*qdisc.DirectQlen))
}
case *Hfsc:
opt := nl.TcHfscOpt{}
opt.Defcls = qdisc.Defcls
options = nl.NewRtAttr(nl.TCA_OPTIONS, opt.Serialize())
case *Netem:
opt := nl.TcNetemQopt{}
opt.Latency = qdisc.Latency
opt.Limit = qdisc.Limit
opt.Loss = qdisc.Loss
opt.Gap = qdisc.Gap
opt.Duplicate = qdisc.Duplicate
opt.Jitter = qdisc.Jitter
options = nl.NewRtAttr(nl.TCA_OPTIONS, opt.Serialize())
// Correlation
corr := nl.TcNetemCorr{}
corr.DelayCorr = qdisc.DelayCorr
corr.LossCorr = qdisc.LossCorr
corr.DupCorr = qdisc.DuplicateCorr
if corr.DelayCorr > 0 || corr.LossCorr > 0 || corr.DupCorr > 0 {
options.AddRtAttr(nl.TCA_NETEM_CORR, corr.Serialize())
}
// Corruption
corruption := nl.TcNetemCorrupt{}
corruption.Probability = qdisc.CorruptProb
corruption.Correlation = qdisc.CorruptCorr
if corruption.Probability > 0 {
options.AddRtAttr(nl.TCA_NETEM_CORRUPT, corruption.Serialize())
}
// Reorder
reorder := nl.TcNetemReorder{}
reorder.Probability = qdisc.ReorderProb
reorder.Correlation = qdisc.ReorderCorr
if reorder.Probability > 0 {
options.AddRtAttr(nl.TCA_NETEM_REORDER, reorder.Serialize())
}
// Rate
if qdisc.Rate64 > 0 {
rate := nl.TcNetemRate{}
if qdisc.Rate64 >= uint64(1<<32) {
options.AddRtAttr(nl.TCA_NETEM_RATE64, nl.Uint64Attr(qdisc.Rate64))
rate.Rate = ^uint32(0)
} else {
rate.Rate = uint32(qdisc.Rate64)
}
options.AddRtAttr(nl.TCA_NETEM_RATE, rate.Serialize())
}
case *Clsact:
options = nil
case *Ingress:
// ingress filters must use the proper handle
if qdisc.Attrs().Parent != HANDLE_INGRESS {
return fmt.Errorf("Ingress filters must set Parent to HANDLE_INGRESS")
}
case *FqCodel:
options.AddRtAttr(nl.TCA_FQ_CODEL_ECN, nl.Uint32Attr((uint32(qdisc.ECN))))
if qdisc.Limit > 0 {
options.AddRtAttr(nl.TCA_FQ_CODEL_LIMIT, nl.Uint32Attr((uint32(qdisc.Limit))))
}
if qdisc.Interval > 0 {
options.AddRtAttr(nl.TCA_FQ_CODEL_INTERVAL, nl.Uint32Attr((uint32(qdisc.Interval))))
}
if qdisc.Flows > 0 {
options.AddRtAttr(nl.TCA_FQ_CODEL_FLOWS, nl.Uint32Attr((uint32(qdisc.Flows))))
}
if qdisc.Quantum > 0 {
options.AddRtAttr(nl.TCA_FQ_CODEL_QUANTUM, nl.Uint32Attr((uint32(qdisc.Quantum))))
}
if qdisc.CEThreshold > 0 {
options.AddRtAttr(nl.TCA_FQ_CODEL_CE_THRESHOLD, nl.Uint32Attr(qdisc.CEThreshold))
}
if qdisc.DropBatchSize > 0 {
options.AddRtAttr(nl.TCA_FQ_CODEL_DROP_BATCH_SIZE, nl.Uint32Attr(qdisc.DropBatchSize))
}
if qdisc.MemoryLimit > 0 {
options.AddRtAttr(nl.TCA_FQ_CODEL_MEMORY_LIMIT, nl.Uint32Attr(qdisc.MemoryLimit))
}
case *Fq:
options.AddRtAttr(nl.TCA_FQ_RATE_ENABLE, nl.Uint32Attr((uint32(qdisc.Pacing))))
if qdisc.Buckets > 0 {
options.AddRtAttr(nl.TCA_FQ_BUCKETS_LOG, nl.Uint32Attr((uint32(qdisc.Buckets))))
}
if qdisc.PacketLimit > 0 {
options.AddRtAttr(nl.TCA_FQ_PLIMIT, nl.Uint32Attr((uint32(qdisc.PacketLimit))))
}
if qdisc.LowRateThreshold > 0 {
options.AddRtAttr(nl.TCA_FQ_LOW_RATE_THRESHOLD, nl.Uint32Attr((uint32(qdisc.LowRateThreshold))))
}
if qdisc.Quantum > 0 {
options.AddRtAttr(nl.TCA_FQ_QUANTUM, nl.Uint32Attr((uint32(qdisc.Quantum))))
}
if qdisc.InitialQuantum > 0 {
options.AddRtAttr(nl.TCA_FQ_INITIAL_QUANTUM, nl.Uint32Attr((uint32(qdisc.InitialQuantum))))
}
if qdisc.FlowRefillDelay > 0 {
options.AddRtAttr(nl.TCA_FQ_FLOW_REFILL_DELAY, nl.Uint32Attr((uint32(qdisc.FlowRefillDelay))))
}
if qdisc.FlowPacketLimit > 0 {
options.AddRtAttr(nl.TCA_FQ_FLOW_PLIMIT, nl.Uint32Attr((uint32(qdisc.FlowPacketLimit))))
}
if qdisc.FlowMaxRate > 0 {
options.AddRtAttr(nl.TCA_FQ_FLOW_MAX_RATE, nl.Uint32Attr((uint32(qdisc.FlowMaxRate))))
}
if qdisc.FlowDefaultRate > 0 {
options.AddRtAttr(nl.TCA_FQ_FLOW_DEFAULT_RATE, nl.Uint32Attr((uint32(qdisc.FlowDefaultRate))))
}
if qdisc.Horizon > 0 {
options.AddRtAttr(nl.TCA_FQ_HORIZON, nl.Uint32Attr(qdisc.Horizon))
}
if qdisc.HorizonDropPolicy != HORIZON_DROP_POLICY_DEFAULT {
options.AddRtAttr(nl.TCA_FQ_HORIZON_DROP, nl.Uint8Attr(qdisc.HorizonDropPolicy))
}
case *Sfq:
opt := nl.TcSfqQoptV1{}
opt.TcSfqQopt.Quantum = qdisc.Quantum
opt.TcSfqQopt.Perturb = int32(qdisc.Perturb)
opt.TcSfqQopt.Limit = qdisc.Limit
opt.TcSfqQopt.Divisor = qdisc.Divisor
options = nl.NewRtAttr(nl.TCA_OPTIONS, opt.Serialize())
default:
options = nil
}
if options != nil {
req.AddData(options)
}
return nil
}
// QdiscList gets a list of qdiscs in the system.
// Equivalent to: `tc qdisc show`.
// The list can be filtered by link.
//
// If the returned error is [ErrDumpInterrupted], results may be inconsistent
// or incomplete.
func QdiscList(link Link) ([]Qdisc, error) {
return pkgHandle.QdiscList(link)
}
// QdiscList gets a list of qdiscs in the system.
// Equivalent to: `tc qdisc show`.
// The list can be filtered by link.
//
// If the returned error is [ErrDumpInterrupted], results may be inconsistent
// or incomplete.
func (h *Handle) QdiscList(link Link) ([]Qdisc, error) {
req := h.newNetlinkRequest(unix.RTM_GETQDISC, unix.NLM_F_DUMP)
index := int32(0)
if link != nil {
base := link.Attrs()
h.ensureIndex(base)
index = int32(base.Index)
}
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Ifindex: index,
}
req.AddData(msg)
msgs, executeErr := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWQDISC)
if executeErr != nil && !errors.Is(executeErr, ErrDumpInterrupted) {
return nil, executeErr
}
var res []Qdisc
for _, m := range msgs {
msg := nl.DeserializeTcMsg(m)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
// skip qdiscs from other interfaces
if link != nil && msg.Ifindex != index {
continue
}
base := QdiscAttrs{
LinkIndex: int(msg.Ifindex),
Handle: msg.Handle,
Parent: msg.Parent,
Refcnt: msg.Info,
}
var qdisc Qdisc
qdiscType := ""
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.TCA_KIND:
qdiscType = string(attr.Value[:len(attr.Value)-1])
switch qdiscType {
case "pfifo_fast":
qdisc = &PfifoFast{}
case "prio":
qdisc = &Prio{}
case "tbf":
qdisc = &Tbf{}
case "ingress":
qdisc = &Ingress{}
case "htb":
qdisc = &Htb{}
case "fq":
qdisc = &Fq{}
case "hfsc":
qdisc = &Hfsc{}
case "fq_codel":
qdisc = &FqCodel{}
case "netem":
qdisc = &Netem{}
case "sfq":
qdisc = &Sfq{}
case "clsact":
qdisc = &Clsact{}
default:
qdisc = &GenericQdisc{QdiscType: qdiscType}
}
case nl.TCA_OPTIONS:
switch qdiscType {
case "pfifo_fast":
// pfifo returns TcPrioMap directly without wrapping it in rtattr
if err := parsePfifoFastData(qdisc, attr.Value); err != nil {
return nil, err
}
case "prio":
// prio returns TcPrioMap directly without wrapping it in rtattr
if err := parsePrioData(qdisc, attr.Value); err != nil {
return nil, err
}
case "tbf":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
if err := parseTbfData(qdisc, data); err != nil {
return nil, err
}
case "hfsc":
if err := parseHfscData(qdisc, attr.Value); err != nil {
return nil, err
}
case "htb":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
if err := parseHtbData(qdisc, data); err != nil {
return nil, err
}
case "fq":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
if err := parseFqData(qdisc, data); err != nil {
return nil, err
}
case "fq_codel":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
if err := parseFqCodelData(qdisc, data); err != nil {
return nil, err
}
case "netem":
if err := parseNetemData(qdisc, attr.Value); err != nil {
return nil, err
}
case "sfq":
if err := parseSfqData(qdisc, attr.Value); err != nil {
return nil, err
}
// no options for ingress
}
case nl.TCA_INGRESS_BLOCK:
ingressBlock := new(uint32)
*ingressBlock = native.Uint32(attr.Value)
base.IngressBlock = ingressBlock
case nl.TCA_STATS:
s, err := parseTcStats(attr.Value)
if err != nil {
return nil, err
}
base.Statistics = (*QdiscStatistics)(s)
case nl.TCA_STATS2:
s, err := parseTcStats2(attr.Value)
if err != nil {
return nil, err
}
base.Statistics = (*QdiscStatistics)(s)
}
}
*qdisc.Attrs() = base
res = append(res, qdisc)
}
return res, executeErr
}
func parsePfifoFastData(qdisc Qdisc, value []byte) error {
pfifo := qdisc.(*PfifoFast)
tcmap := nl.DeserializeTcPrioMap(value)
pfifo.PriorityMap = tcmap.Priomap
pfifo.Bands = uint8(tcmap.Bands)
return nil
}
func parsePrioData(qdisc Qdisc, value []byte) error {
prio := qdisc.(*Prio)
tcmap := nl.DeserializeTcPrioMap(value)
prio.PriorityMap = tcmap.Priomap
prio.Bands = uint8(tcmap.Bands)
return nil
}
func parseHtbData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
htb := qdisc.(*Htb)
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_HTB_INIT:
opt := nl.DeserializeTcHtbGlob(datum.Value)
htb.Version = opt.Version
htb.Rate2Quantum = opt.Rate2Quantum
htb.Defcls = opt.Defcls
htb.Debug = opt.Debug
htb.DirectPkts = opt.DirectPkts
case nl.TCA_HTB_DIRECT_QLEN:
directQlen := native.Uint32(datum.Value)
htb.DirectQlen = &directQlen
}
}
return nil
}
func parseFqCodelData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
fqCodel := qdisc.(*FqCodel)
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_FQ_CODEL_TARGET:
fqCodel.Target = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_LIMIT:
fqCodel.Limit = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_INTERVAL:
fqCodel.Interval = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_ECN:
fqCodel.ECN = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_FLOWS:
fqCodel.Flows = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_QUANTUM:
fqCodel.Quantum = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_CE_THRESHOLD:
fqCodel.CEThreshold = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_DROP_BATCH_SIZE:
fqCodel.DropBatchSize = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_MEMORY_LIMIT:
fqCodel.MemoryLimit = native.Uint32(datum.Value)
}
}
return nil
}
func parseHfscData(qdisc Qdisc, data []byte) error {
Hfsc := qdisc.(*Hfsc)
Hfsc.Defcls = native.Uint16(data)
return nil
}
func parseFqData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
fq := qdisc.(*Fq)
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_FQ_BUCKETS_LOG:
fq.Buckets = native.Uint32(datum.Value)
case nl.TCA_FQ_LOW_RATE_THRESHOLD:
fq.LowRateThreshold = native.Uint32(datum.Value)
case nl.TCA_FQ_QUANTUM:
fq.Quantum = native.Uint32(datum.Value)
case nl.TCA_FQ_RATE_ENABLE:
fq.Pacing = native.Uint32(datum.Value)
case nl.TCA_FQ_INITIAL_QUANTUM:
fq.InitialQuantum = native.Uint32(datum.Value)
case nl.TCA_FQ_ORPHAN_MASK:
// TODO
case nl.TCA_FQ_FLOW_REFILL_DELAY:
fq.FlowRefillDelay = native.Uint32(datum.Value)
case nl.TCA_FQ_FLOW_PLIMIT:
fq.FlowPacketLimit = native.Uint32(datum.Value)
case nl.TCA_FQ_PLIMIT:
fq.PacketLimit = native.Uint32(datum.Value)
case nl.TCA_FQ_FLOW_MAX_RATE:
fq.FlowMaxRate = native.Uint32(datum.Value)
case nl.TCA_FQ_FLOW_DEFAULT_RATE:
fq.FlowDefaultRate = native.Uint32(datum.Value)
case nl.TCA_FQ_HORIZON:
fq.Horizon = native.Uint32(datum.Value)
case nl.TCA_FQ_HORIZON_DROP:
fq.HorizonDropPolicy = datum.Value[0]
}
}
return nil
}
func parseNetemData(qdisc Qdisc, value []byte) error {
netem := qdisc.(*Netem)
opt := nl.DeserializeTcNetemQopt(value)
netem.Latency = opt.Latency
netem.Limit = opt.Limit
netem.Loss = opt.Loss
netem.Gap = opt.Gap
netem.Duplicate = opt.Duplicate
netem.Jitter = opt.Jitter
data, err := nl.ParseRouteAttr(value[nl.SizeofTcNetemQopt:])
if err != nil {
return err
}
var rate *nl.TcNetemRate
var rate64 uint64
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_NETEM_CORR:
opt := nl.DeserializeTcNetemCorr(datum.Value)
netem.DelayCorr = opt.DelayCorr
netem.LossCorr = opt.LossCorr
netem.DuplicateCorr = opt.DupCorr
case nl.TCA_NETEM_CORRUPT:
opt := nl.DeserializeTcNetemCorrupt(datum.Value)
netem.CorruptProb = opt.Probability
netem.CorruptCorr = opt.Correlation
case nl.TCA_NETEM_REORDER:
opt := nl.DeserializeTcNetemReorder(datum.Value)
netem.ReorderProb = opt.Probability
netem.ReorderCorr = opt.Correlation
case nl.TCA_NETEM_RATE:
rate = nl.DeserializeTcNetemRate(datum.Value)
case nl.TCA_NETEM_RATE64:
rate64 = native.Uint64(datum.Value)
}
}
if rate != nil {
netem.Rate64 = uint64(rate.Rate)
if rate64 > 0 {
netem.Rate64 = rate64
}
}
return nil
}
func parseTbfData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
tbf := qdisc.(*Tbf)
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_TBF_PARMS:
opt := nl.DeserializeTcTbfQopt(datum.Value)
tbf.Rate = uint64(opt.Rate.Rate)
tbf.Peakrate = uint64(opt.Peakrate.Rate)
tbf.Limit = opt.Limit
tbf.Buffer = opt.Buffer
case nl.TCA_TBF_RATE64:
tbf.Rate = native.Uint64(datum.Value[0:8])
case nl.TCA_TBF_PRATE64:
tbf.Peakrate = native.Uint64(datum.Value[0:8])
case nl.TCA_TBF_PBURST:
tbf.Minburst = native.Uint32(datum.Value[0:4])
}
}
return nil
}
func parseSfqData(qdisc Qdisc, value []byte) error {
sfq := qdisc.(*Sfq)
opt := nl.DeserializeTcSfqQoptV1(value)
sfq.Quantum = opt.TcSfqQopt.Quantum
sfq.Perturb = uint8(opt.TcSfqQopt.Perturb)
sfq.Limit = opt.TcSfqQopt.Limit
sfq.Divisor = opt.TcSfqQopt.Divisor
return nil
}
const (
TIME_UNITS_PER_SEC = 1000000
)
var (
tickInUsec float64
clockFactor float64
hz float64
// Without this, the go race detector may report races.
initClockMutex sync.Mutex
)
func initClock() {
data, err := ioutil.ReadFile("/proc/net/psched")
if err != nil {
return
}
parts := strings.Split(strings.TrimSpace(string(data)), " ")
if len(parts) < 4 {
return
}
var vals [4]uint64
for i := range vals {
val, err := strconv.ParseUint(parts[i], 16, 32)
if err != nil {
return
}
vals[i] = val
}
// compatibility
if vals[2] == 1000000000 {
vals[0] = vals[1]
}
clockFactor = float64(vals[2]) / TIME_UNITS_PER_SEC
tickInUsec = float64(vals[0]) / float64(vals[1]) * clockFactor
if vals[2] == 1000000 {
// ref https://git.kernel.org/pub/scm/network/iproute2/iproute2.git/tree/lib/utils.c#n963
hz = float64(vals[3])
} else {
hz = 100
}
}
func TickInUsec() float64 {
initClockMutex.Lock()
defer initClockMutex.Unlock()
if tickInUsec == 0.0 {
initClock()
}
return tickInUsec
}
func ClockFactor() float64 {
initClockMutex.Lock()
defer initClockMutex.Unlock()
if clockFactor == 0.0 {
initClock()
}
return clockFactor
}
func Hz() float64 {
initClockMutex.Lock()
defer initClockMutex.Unlock()
if hz == 0.0 {
initClock()
}
return hz
}
func time2Tick(time uint32) uint32 {
return uint32(float64(time) * TickInUsec())
}
func tick2Time(tick uint32) uint32 {
return uint32(float64(tick) / TickInUsec())
}
func time2Ktime(time uint32) uint32 {
return uint32(float64(time) * ClockFactor())
}
func ktime2Time(ktime uint32) uint32 {
return uint32(float64(ktime) / ClockFactor())
}
func burst(rate uint64, buffer uint32) uint32 {
return uint32(float64(rate) * float64(tick2Time(buffer)) / TIME_UNITS_PER_SEC)
}
func latency(rate uint64, limit, buffer uint32) float64 {
return TIME_UNITS_PER_SEC*(float64(limit)/float64(rate)) - float64(tick2Time(buffer))
}
func Xmittime(rate uint64, size uint32) uint32 {
// https://git.kernel.org/pub/scm/network/iproute2/iproute2.git/tree/tc/tc_core.c#n62
return time2Tick(uint32(TIME_UNITS_PER_SEC * (float64(size) / float64(rate))))
}
func Xmitsize(rate uint64, ticks uint32) uint32 {
return uint32((float64(rate) * float64(tick2Time(ticks))) / TIME_UNITS_PER_SEC)
}