package netlink import ( "fmt" "net" "syscall" "unsafe" "github.com/vishvananda/netlink/nl" "github.com/vishvananda/netns" "golang.org/x/sys/unix" ) const ( NDA_UNSPEC = iota NDA_DST NDA_LLADDR NDA_CACHEINFO NDA_PROBES NDA_VLAN NDA_PORT NDA_VNI NDA_IFINDEX NDA_MASTER NDA_LINK_NETNSID NDA_SRC_VNI NDA_PROTOCOL NDA_NH_ID NDA_FDB_EXT_ATTRS NDA_FLAGS_EXT NDA_MAX = NDA_FLAGS_EXT ) // Neighbor Cache Entry States. const ( NUD_NONE = 0x00 NUD_INCOMPLETE = 0x01 NUD_REACHABLE = 0x02 NUD_STALE = 0x04 NUD_DELAY = 0x08 NUD_PROBE = 0x10 NUD_FAILED = 0x20 NUD_NOARP = 0x40 NUD_PERMANENT = 0x80 ) // Neighbor Flags const ( NTF_USE = 0x01 NTF_SELF = 0x02 NTF_MASTER = 0x04 NTF_PROXY = 0x08 NTF_EXT_LEARNED = 0x10 NTF_OFFLOADED = 0x20 NTF_STICKY = 0x40 NTF_ROUTER = 0x80 ) // Extended Neighbor Flags const ( NTF_EXT_MANAGED = 0x00000001 ) // Ndmsg is for adding, removing or receiving information about a neighbor table entry type Ndmsg struct { Family uint8 Index uint32 State uint16 Flags uint8 Type uint8 } func deserializeNdmsg(b []byte) *Ndmsg { var dummy Ndmsg return (*Ndmsg)(unsafe.Pointer(&b[0:unsafe.Sizeof(dummy)][0])) } func (msg *Ndmsg) Serialize() []byte { return (*(*[unsafe.Sizeof(*msg)]byte)(unsafe.Pointer(msg)))[:] } func (msg *Ndmsg) Len() int { return int(unsafe.Sizeof(*msg)) } // NeighAdd will add an IP to MAC mapping to the ARP table // Equivalent to: `ip neigh add ....` func NeighAdd(neigh *Neigh) error { return pkgHandle.NeighAdd(neigh) } // NeighAdd will add an IP to MAC mapping to the ARP table // Equivalent to: `ip neigh add ....` func (h *Handle) NeighAdd(neigh *Neigh) error { return h.neighAdd(neigh, unix.NLM_F_CREATE|unix.NLM_F_EXCL) } // NeighSet will add or replace an IP to MAC mapping to the ARP table // Equivalent to: `ip neigh replace....` func NeighSet(neigh *Neigh) error { return pkgHandle.NeighSet(neigh) } // NeighSet will add or replace an IP to MAC mapping to the ARP table // Equivalent to: `ip neigh replace....` func (h *Handle) NeighSet(neigh *Neigh) error { return h.neighAdd(neigh, unix.NLM_F_CREATE|unix.NLM_F_REPLACE) } // NeighAppend will append an entry to FDB // Equivalent to: `bridge fdb append...` func NeighAppend(neigh *Neigh) error { return pkgHandle.NeighAppend(neigh) } // NeighAppend will append an entry to FDB // Equivalent to: `bridge fdb append...` func (h *Handle) NeighAppend(neigh *Neigh) error { return h.neighAdd(neigh, unix.NLM_F_CREATE|unix.NLM_F_APPEND) } // NeighAppend will append an entry to FDB // Equivalent to: `bridge fdb append...` func neighAdd(neigh *Neigh, mode int) error { return pkgHandle.neighAdd(neigh, mode) } // NeighAppend will append an entry to FDB // Equivalent to: `bridge fdb append...` func (h *Handle) neighAdd(neigh *Neigh, mode int) error { req := h.newNetlinkRequest(unix.RTM_NEWNEIGH, mode|unix.NLM_F_ACK) return neighHandle(neigh, req) } // NeighDel will delete an IP address from a link device. // Equivalent to: `ip addr del $addr dev $link` func NeighDel(neigh *Neigh) error { return pkgHandle.NeighDel(neigh) } // NeighDel will delete an IP address from a link device. // Equivalent to: `ip addr del $addr dev $link` func (h *Handle) NeighDel(neigh *Neigh) error { req := h.newNetlinkRequest(unix.RTM_DELNEIGH, unix.NLM_F_ACK) return neighHandle(neigh, req) } func neighHandle(neigh *Neigh, req *nl.NetlinkRequest) error { var family int if neigh.Family > 0 { family = neigh.Family } else { family = nl.GetIPFamily(neigh.IP) } msg := Ndmsg{ Family: uint8(family), Index: uint32(neigh.LinkIndex), State: uint16(neigh.State), Type: uint8(neigh.Type), Flags: uint8(neigh.Flags), } req.AddData(&msg) ipData := neigh.IP.To4() if ipData == nil { ipData = neigh.IP.To16() } dstData := nl.NewRtAttr(NDA_DST, ipData) req.AddData(dstData) if neigh.LLIPAddr != nil { llIPData := nl.NewRtAttr(NDA_LLADDR, neigh.LLIPAddr.To4()) req.AddData(llIPData) } else if neigh.HardwareAddr != nil { hwData := nl.NewRtAttr(NDA_LLADDR, []byte(neigh.HardwareAddr)) req.AddData(hwData) } if neigh.FlagsExt != 0 { flagsExtData := nl.NewRtAttr(NDA_FLAGS_EXT, nl.Uint32Attr(uint32(neigh.FlagsExt))) req.AddData(flagsExtData) } if neigh.Vlan != 0 { vlanData := nl.NewRtAttr(NDA_VLAN, nl.Uint16Attr(uint16(neigh.Vlan))) req.AddData(vlanData) } if neigh.VNI != 0 { vniData := nl.NewRtAttr(NDA_VNI, nl.Uint32Attr(uint32(neigh.VNI))) req.AddData(vniData) } if neigh.MasterIndex != 0 { masterData := nl.NewRtAttr(NDA_MASTER, nl.Uint32Attr(uint32(neigh.MasterIndex))) req.AddData(masterData) } _, err := req.Execute(unix.NETLINK_ROUTE, 0) return err } // NeighList returns a list of IP-MAC mappings in the system (ARP table). // Equivalent to: `ip neighbor show`. // The list can be filtered by link and ip family. func NeighList(linkIndex, family int) ([]Neigh, error) { return pkgHandle.NeighList(linkIndex, family) } // NeighProxyList returns a list of neighbor proxies in the system. // Equivalent to: `ip neighbor show proxy`. // The list can be filtered by link and ip family. func NeighProxyList(linkIndex, family int) ([]Neigh, error) { return pkgHandle.NeighProxyList(linkIndex, family) } // NeighList returns a list of IP-MAC mappings in the system (ARP table). // Equivalent to: `ip neighbor show`. // The list can be filtered by link and ip family. func (h *Handle) NeighList(linkIndex, family int) ([]Neigh, error) { return h.NeighListExecute(Ndmsg{ Family: uint8(family), Index: uint32(linkIndex), }) } // NeighProxyList returns a list of neighbor proxies in the system. // Equivalent to: `ip neighbor show proxy`. // The list can be filtered by link, ip family. func (h *Handle) NeighProxyList(linkIndex, family int) ([]Neigh, error) { return h.NeighListExecute(Ndmsg{ Family: uint8(family), Index: uint32(linkIndex), Flags: NTF_PROXY, }) } // NeighListExecute returns a list of neighbour entries filtered by link, ip family, flag and state. func NeighListExecute(msg Ndmsg) ([]Neigh, error) { return pkgHandle.NeighListExecute(msg) } // NeighListExecute returns a list of neighbour entries filtered by link, ip family, flag and state. func (h *Handle) NeighListExecute(msg Ndmsg) ([]Neigh, error) { req := h.newNetlinkRequest(unix.RTM_GETNEIGH, unix.NLM_F_DUMP) req.AddData(&msg) msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWNEIGH) if err != nil { return nil, err } var res []Neigh for _, m := range msgs { ndm := deserializeNdmsg(m) if msg.Index != 0 && ndm.Index != msg.Index { // Ignore messages from other interfaces continue } if msg.Family != 0 && ndm.Family != msg.Family { continue } if msg.State != 0 && ndm.State != msg.State { continue } if msg.Type != 0 && ndm.Type != msg.Type { continue } if msg.Flags != 0 && ndm.Flags != msg.Flags { continue } neigh, err := NeighDeserialize(m) if err != nil { continue } res = append(res, *neigh) } return res, nil } func NeighDeserialize(m []byte) (*Neigh, error) { msg := deserializeNdmsg(m) neigh := Neigh{ LinkIndex: int(msg.Index), Family: int(msg.Family), State: int(msg.State), Type: int(msg.Type), Flags: int(msg.Flags), } attrs, err := nl.ParseRouteAttr(m[msg.Len():]) if err != nil { return nil, err } for _, attr := range attrs { switch attr.Attr.Type { case NDA_DST: neigh.IP = net.IP(attr.Value) case NDA_LLADDR: // BUG: Is this a bug in the netlink library? // #define RTA_LENGTH(len) (RTA_ALIGN(sizeof(struct rtattr)) + (len)) // #define RTA_PAYLOAD(rta) ((int)((rta)->rta_len) - RTA_LENGTH(0)) attrLen := attr.Attr.Len - unix.SizeofRtAttr if attrLen == 4 { neigh.LLIPAddr = net.IP(attr.Value) } else if attrLen == 16 { // Can be IPv6 or FireWire HWAddr link, err := LinkByIndex(neigh.LinkIndex) if err == nil && link.Attrs().EncapType == "tunnel6" { neigh.IP = net.IP(attr.Value) } else { neigh.HardwareAddr = net.HardwareAddr(attr.Value) } } else { neigh.HardwareAddr = net.HardwareAddr(attr.Value) } case NDA_FLAGS_EXT: neigh.FlagsExt = int(native.Uint32(attr.Value[0:4])) case NDA_VLAN: neigh.Vlan = int(native.Uint16(attr.Value[0:2])) case NDA_VNI: neigh.VNI = int(native.Uint32(attr.Value[0:4])) case NDA_MASTER: neigh.MasterIndex = int(native.Uint32(attr.Value[0:4])) } } return &neigh, nil } // NeighSubscribe takes a chan down which notifications will be sent // when neighbors are added or deleted. Close the 'done' chan to stop subscription. func NeighSubscribe(ch chan<- NeighUpdate, done <-chan struct{}) error { return neighSubscribeAt(netns.None(), netns.None(), ch, done, nil, false, 0, nil, false) } // NeighSubscribeAt works like NeighSubscribe plus it allows the caller // to choose the network namespace in which to subscribe (ns). func NeighSubscribeAt(ns netns.NsHandle, ch chan<- NeighUpdate, done <-chan struct{}) error { return neighSubscribeAt(ns, netns.None(), ch, done, nil, false, 0, nil, false) } // NeighSubscribeOptions contains a set of options to use with // NeighSubscribeWithOptions. type NeighSubscribeOptions struct { Namespace *netns.NsHandle ErrorCallback func(error) ListExisting bool // max size is based on value of /proc/sys/net/core/rmem_max ReceiveBufferSize int ReceiveBufferForceSize bool ReceiveTimeout *unix.Timeval } // NeighSubscribeWithOptions work like NeighSubscribe but enable to // provide additional options to modify the behavior. Currently, the // namespace can be provided as well as an error callback. func NeighSubscribeWithOptions(ch chan<- NeighUpdate, done <-chan struct{}, options NeighSubscribeOptions) error { if options.Namespace == nil { none := netns.None() options.Namespace = &none } return neighSubscribeAt(*options.Namespace, netns.None(), ch, done, options.ErrorCallback, options.ListExisting, options.ReceiveBufferSize, options.ReceiveTimeout, options.ReceiveBufferForceSize) } func neighSubscribeAt(newNs, curNs netns.NsHandle, ch chan<- NeighUpdate, done <-chan struct{}, cberr func(error), listExisting bool, rcvbuf int, rcvTimeout *unix.Timeval, rcvbufForce bool) error { s, err := nl.SubscribeAt(newNs, curNs, unix.NETLINK_ROUTE, unix.RTNLGRP_NEIGH) makeRequest := func(family int) error { req := pkgHandle.newNetlinkRequest(unix.RTM_GETNEIGH, unix.NLM_F_DUMP) ndmsg := &Ndmsg{Family: uint8(family)} req.AddData(ndmsg) if err := s.Send(req); err != nil { return err } return nil } if err != nil { return err } if rcvTimeout != nil { if err := s.SetReceiveTimeout(rcvTimeout); err != nil { return err } } if rcvbuf != 0 { err = s.SetReceiveBufferSize(rcvbuf, rcvbufForce) if err != nil { return err } } if done != nil { go func() { <-done s.Close() }() } if listExisting { if err := makeRequest(unix.AF_UNSPEC); err != nil { return err } // We have to wait for NLMSG_DONE before making AF_BRIDGE request } go func() { defer close(ch) for { msgs, from, err := s.Receive() if err != nil { if cberr != nil { cberr(err) } return } if from.Pid != nl.PidKernel { if cberr != nil { cberr(fmt.Errorf("Wrong sender portid %d, expected %d", from.Pid, nl.PidKernel)) } continue } for _, m := range msgs { if m.Header.Type == unix.NLMSG_DONE { if listExisting { // This will be called after handling AF_UNSPEC // list request, we have to wait for NLMSG_DONE // before making another request if err := makeRequest(unix.AF_BRIDGE); err != nil { if cberr != nil { cberr(err) } return } listExisting = false } continue } if m.Header.Type == unix.NLMSG_ERROR { nError := int32(native.Uint32(m.Data[0:4])) if nError == 0 { continue } if cberr != nil { cberr(syscall.Errno(-nError)) } return } neigh, err := NeighDeserialize(m.Data) if err != nil { if cberr != nil { cberr(err) } return } ch <- NeighUpdate{Type: m.Header.Type, Neigh: *neigh} } } }() return nil }