package netlink import ( "fmt" "unsafe" "github.com/vishvananda/netlink/nl" "golang.org/x/sys/unix" ) func writeStateAlgo(a *XfrmStateAlgo) []byte { algo := nl.XfrmAlgo{ AlgKeyLen: uint32(len(a.Key) * 8), AlgKey: a.Key, } end := len(a.Name) if end > 64 { end = 64 } copy(algo.AlgName[:end], a.Name) return algo.Serialize() } func writeStateAlgoAuth(a *XfrmStateAlgo) []byte { algo := nl.XfrmAlgoAuth{ AlgKeyLen: uint32(len(a.Key) * 8), AlgTruncLen: uint32(a.TruncateLen), AlgKey: a.Key, } end := len(a.Name) if end > 64 { end = 64 } copy(algo.AlgName[:end], a.Name) return algo.Serialize() } func writeStateAlgoAead(a *XfrmStateAlgo) []byte { algo := nl.XfrmAlgoAEAD{ AlgKeyLen: uint32(len(a.Key) * 8), AlgICVLen: uint32(a.ICVLen), AlgKey: a.Key, } end := len(a.Name) if end > 64 { end = 64 } copy(algo.AlgName[:end], a.Name) return algo.Serialize() } func writeMark(m *XfrmMark) []byte { mark := &nl.XfrmMark{ Value: m.Value, Mask: m.Mask, } if mark.Mask == 0 { mark.Mask = ^uint32(0) } return mark.Serialize() } func writeReplayEsn(replayWindow int) []byte { replayEsn := &nl.XfrmReplayStateEsn{ OSeq: 0, Seq: 0, OSeqHi: 0, SeqHi: 0, ReplayWindow: uint32(replayWindow), } // Linux stores the bitmap to identify the already received sequence packets in blocks of uint32 elements. // Therefore bitmap length is the minimum number of uint32 elements needed. The following is a ceiling operation. bytesPerElem := int(unsafe.Sizeof(replayEsn.BmpLen)) // Any uint32 variable is good for this replayEsn.BmpLen = uint32((replayWindow + (bytesPerElem * 8) - 1) / (bytesPerElem * 8)) return replayEsn.Serialize() } // XfrmStateAdd will add an xfrm state to the system. // Equivalent to: `ip xfrm state add $state` func XfrmStateAdd(state *XfrmState) error { return pkgHandle.XfrmStateAdd(state) } // XfrmStateAdd will add an xfrm state to the system. // Equivalent to: `ip xfrm state add $state` func (h *Handle) XfrmStateAdd(state *XfrmState) error { return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_NEWSA) } // XfrmStateAllocSpi will allocate an xfrm state in the system. // Equivalent to: `ip xfrm state allocspi` func XfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) { return pkgHandle.xfrmStateAllocSpi(state) } // XfrmStateUpdate will update an xfrm state to the system. // Equivalent to: `ip xfrm state update $state` func XfrmStateUpdate(state *XfrmState) error { return pkgHandle.XfrmStateUpdate(state) } // XfrmStateUpdate will update an xfrm state to the system. // Equivalent to: `ip xfrm state update $state` func (h *Handle) XfrmStateUpdate(state *XfrmState) error { return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_UPDSA) } func (h *Handle) xfrmStateAddOrUpdate(state *XfrmState, nlProto int) error { // A state with spi 0 can't be deleted so don't allow it to be set if state.Spi == 0 { return fmt.Errorf("Spi must be set when adding xfrm state.") } req := h.newNetlinkRequest(nlProto, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK) msg := xfrmUsersaInfoFromXfrmState(state) if state.ESN { if state.ReplayWindow == 0 { return fmt.Errorf("ESN flag set without ReplayWindow") } msg.Flags |= nl.XFRM_STATE_ESN msg.ReplayWindow = 0 } limitsToLft(state.Limits, &msg.Lft) req.AddData(msg) if state.Auth != nil { out := nl.NewRtAttr(nl.XFRMA_ALG_AUTH_TRUNC, writeStateAlgoAuth(state.Auth)) req.AddData(out) } if state.Crypt != nil { out := nl.NewRtAttr(nl.XFRMA_ALG_CRYPT, writeStateAlgo(state.Crypt)) req.AddData(out) } if state.Aead != nil { out := nl.NewRtAttr(nl.XFRMA_ALG_AEAD, writeStateAlgoAead(state.Aead)) req.AddData(out) } if state.Encap != nil { encapData := make([]byte, nl.SizeofXfrmEncapTmpl) encap := nl.DeserializeXfrmEncapTmpl(encapData) encap.EncapType = uint16(state.Encap.Type) encap.EncapSport = nl.Swap16(uint16(state.Encap.SrcPort)) encap.EncapDport = nl.Swap16(uint16(state.Encap.DstPort)) encap.EncapOa.FromIP(state.Encap.OriginalAddress) out := nl.NewRtAttr(nl.XFRMA_ENCAP, encapData) req.AddData(out) } if state.Mark != nil { out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark)) req.AddData(out) } if state.ESN { out := nl.NewRtAttr(nl.XFRMA_REPLAY_ESN_VAL, writeReplayEsn(state.ReplayWindow)) req.AddData(out) } _, err := req.Execute(unix.NETLINK_XFRM, 0) return err } func (h *Handle) xfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) { req := h.newNetlinkRequest(nl.XFRM_MSG_ALLOCSPI, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK) msg := &nl.XfrmUserSpiInfo{} msg.XfrmUsersaInfo = *(xfrmUsersaInfoFromXfrmState(state)) // 1-255 is reserved by IANA for future use msg.Min = 0x100 msg.Max = 0xffffffff req.AddData(msg) if state.Mark != nil { out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark)) req.AddData(out) } msgs, err := req.Execute(unix.NETLINK_XFRM, 0) if err != nil { return nil, err } return parseXfrmState(msgs[0], FAMILY_ALL) } // XfrmStateDel will delete an xfrm state from the system. Note that // the Algos are ignored when matching the state to delete. // Equivalent to: `ip xfrm state del $state` func XfrmStateDel(state *XfrmState) error { return pkgHandle.XfrmStateDel(state) } // XfrmStateDel will delete an xfrm state from the system. Note that // the Algos are ignored when matching the state to delete. // Equivalent to: `ip xfrm state del $state` func (h *Handle) XfrmStateDel(state *XfrmState) error { _, err := h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_DELSA) return err } // XfrmStateList gets a list of xfrm states in the system. // Equivalent to: `ip [-4|-6] xfrm state show`. // The list can be filtered by ip family. func XfrmStateList(family int) ([]XfrmState, error) { return pkgHandle.XfrmStateList(family) } // XfrmStateList gets a list of xfrm states in the system. // Equivalent to: `ip xfrm state show`. // The list can be filtered by ip family. func (h *Handle) XfrmStateList(family int) ([]XfrmState, error) { req := h.newNetlinkRequest(nl.XFRM_MSG_GETSA, unix.NLM_F_DUMP) msgs, err := req.Execute(unix.NETLINK_XFRM, nl.XFRM_MSG_NEWSA) if err != nil { return nil, err } var res []XfrmState for _, m := range msgs { if state, err := parseXfrmState(m, family); err == nil { res = append(res, *state) } else if err == familyError { continue } else { return nil, err } } return res, nil } // XfrmStateGet gets the xfrm state described by the ID, if found. // Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`. // Only the fields which constitue the SA ID must be filled in: // ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ] // mark is optional func XfrmStateGet(state *XfrmState) (*XfrmState, error) { return pkgHandle.XfrmStateGet(state) } // XfrmStateGet gets the xfrm state described by the ID, if found. // Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`. // Only the fields which constitue the SA ID must be filled in: // ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ] // mark is optional func (h *Handle) XfrmStateGet(state *XfrmState) (*XfrmState, error) { return h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_GETSA) } func (h *Handle) xfrmStateGetOrDelete(state *XfrmState, nlProto int) (*XfrmState, error) { req := h.newNetlinkRequest(nlProto, unix.NLM_F_ACK) msg := &nl.XfrmUsersaId{} msg.Family = uint16(nl.GetIPFamily(state.Dst)) msg.Daddr.FromIP(state.Dst) msg.Proto = uint8(state.Proto) msg.Spi = nl.Swap32(uint32(state.Spi)) req.AddData(msg) if state.Mark != nil { out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark)) req.AddData(out) } if state.Src != nil { out := nl.NewRtAttr(nl.XFRMA_SRCADDR, state.Src.To16()) req.AddData(out) } resType := nl.XFRM_MSG_NEWSA if nlProto == nl.XFRM_MSG_DELSA { resType = 0 } msgs, err := req.Execute(unix.NETLINK_XFRM, uint16(resType)) if err != nil { return nil, err } if nlProto == nl.XFRM_MSG_DELSA { return nil, nil } s, err := parseXfrmState(msgs[0], FAMILY_ALL) if err != nil { return nil, err } return s, nil } var familyError = fmt.Errorf("family error") func xfrmStateFromXfrmUsersaInfo(msg *nl.XfrmUsersaInfo) *XfrmState { var state XfrmState state.Dst = msg.Id.Daddr.ToIP() state.Src = msg.Saddr.ToIP() state.Proto = Proto(msg.Id.Proto) state.Mode = Mode(msg.Mode) state.Spi = int(nl.Swap32(msg.Id.Spi)) state.Reqid = int(msg.Reqid) state.ReplayWindow = int(msg.ReplayWindow) lftToLimits(&msg.Lft, &state.Limits) curToStats(&msg.Curlft, &msg.Stats, &state.Statistics) return &state } func parseXfrmState(m []byte, family int) (*XfrmState, error) { msg := nl.DeserializeXfrmUsersaInfo(m) // This is mainly for the state dump if family != FAMILY_ALL && family != int(msg.Family) { return nil, familyError } state := xfrmStateFromXfrmUsersaInfo(msg) attrs, err := nl.ParseRouteAttr(m[nl.SizeofXfrmUsersaInfo:]) if err != nil { return nil, err } for _, attr := range attrs { switch attr.Attr.Type { case nl.XFRMA_ALG_AUTH, nl.XFRMA_ALG_CRYPT: var resAlgo *XfrmStateAlgo if attr.Attr.Type == nl.XFRMA_ALG_AUTH { if state.Auth == nil { state.Auth = new(XfrmStateAlgo) } resAlgo = state.Auth } else { state.Crypt = new(XfrmStateAlgo) resAlgo = state.Crypt } algo := nl.DeserializeXfrmAlgo(attr.Value[:]) (*resAlgo).Name = nl.BytesToString(algo.AlgName[:]) (*resAlgo).Key = algo.AlgKey case nl.XFRMA_ALG_AUTH_TRUNC: if state.Auth == nil { state.Auth = new(XfrmStateAlgo) } algo := nl.DeserializeXfrmAlgoAuth(attr.Value[:]) state.Auth.Name = nl.BytesToString(algo.AlgName[:]) state.Auth.Key = algo.AlgKey state.Auth.TruncateLen = int(algo.AlgTruncLen) case nl.XFRMA_ALG_AEAD: state.Aead = new(XfrmStateAlgo) algo := nl.DeserializeXfrmAlgoAEAD(attr.Value[:]) state.Aead.Name = nl.BytesToString(algo.AlgName[:]) state.Aead.Key = algo.AlgKey state.Aead.ICVLen = int(algo.AlgICVLen) case nl.XFRMA_ENCAP: encap := nl.DeserializeXfrmEncapTmpl(attr.Value[:]) state.Encap = new(XfrmStateEncap) state.Encap.Type = EncapType(encap.EncapType) state.Encap.SrcPort = int(nl.Swap16(encap.EncapSport)) state.Encap.DstPort = int(nl.Swap16(encap.EncapDport)) state.Encap.OriginalAddress = encap.EncapOa.ToIP() case nl.XFRMA_MARK: mark := nl.DeserializeXfrmMark(attr.Value[:]) state.Mark = new(XfrmMark) state.Mark.Value = mark.Value state.Mark.Mask = mark.Mask } } return state, nil } // XfrmStateFlush will flush the xfrm state on the system. // proto = 0 means any transformation protocols // Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]` func XfrmStateFlush(proto Proto) error { return pkgHandle.XfrmStateFlush(proto) } // XfrmStateFlush will flush the xfrm state on the system. // proto = 0 means any transformation protocols // Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]` func (h *Handle) XfrmStateFlush(proto Proto) error { req := h.newNetlinkRequest(nl.XFRM_MSG_FLUSHSA, unix.NLM_F_ACK) req.AddData(&nl.XfrmUsersaFlush{Proto: uint8(proto)}) _, err := req.Execute(unix.NETLINK_XFRM, 0) return err } func limitsToLft(lmts XfrmStateLimits, lft *nl.XfrmLifetimeCfg) { if lmts.ByteSoft != 0 { lft.SoftByteLimit = lmts.ByteSoft } else { lft.SoftByteLimit = nl.XFRM_INF } if lmts.ByteHard != 0 { lft.HardByteLimit = lmts.ByteHard } else { lft.HardByteLimit = nl.XFRM_INF } if lmts.PacketSoft != 0 { lft.SoftPacketLimit = lmts.PacketSoft } else { lft.SoftPacketLimit = nl.XFRM_INF } if lmts.PacketHard != 0 { lft.HardPacketLimit = lmts.PacketHard } else { lft.HardPacketLimit = nl.XFRM_INF } lft.SoftAddExpiresSeconds = lmts.TimeSoft lft.HardAddExpiresSeconds = lmts.TimeHard lft.SoftUseExpiresSeconds = lmts.TimeUseSoft lft.HardUseExpiresSeconds = lmts.TimeUseHard } func lftToLimits(lft *nl.XfrmLifetimeCfg, lmts *XfrmStateLimits) { *lmts = *(*XfrmStateLimits)(unsafe.Pointer(lft)) } func curToStats(cur *nl.XfrmLifetimeCur, wstats *nl.XfrmStats, stats *XfrmStateStats) { stats.Bytes = cur.Bytes stats.Packets = cur.Packets stats.AddTime = cur.AddTime stats.UseTime = cur.UseTime stats.ReplayWindow = wstats.ReplayWindow stats.Replay = wstats.Replay stats.Failed = wstats.IntegrityFailed } func xfrmUsersaInfoFromXfrmState(state *XfrmState) *nl.XfrmUsersaInfo { msg := &nl.XfrmUsersaInfo{} msg.Family = uint16(nl.GetIPFamily(state.Dst)) msg.Id.Daddr.FromIP(state.Dst) msg.Saddr.FromIP(state.Src) msg.Id.Proto = uint8(state.Proto) msg.Mode = uint8(state.Mode) msg.Id.Spi = nl.Swap32(uint32(state.Spi)) msg.Reqid = uint32(state.Reqid) msg.ReplayWindow = uint8(state.ReplayWindow) return msg }