mirror of
git://git.musl-libc.org/musl
synced 2025-01-15 11:21:40 +00:00
3c4214db72
__IS_FP is a portable integer constant expression now (uses that unsigned long long is larger than float) the result casting logic should work now on all compilers supporting typeof
271 lines
8.4 KiB
C
271 lines
8.4 KiB
C
#ifndef _TGMATH_H
|
|
#define _TGMATH_H
|
|
|
|
/*
|
|
the return types are only correct with gcc (__GNUC__)
|
|
otherwise they are long double or long double complex
|
|
|
|
the long double version of a function is never chosen when
|
|
sizeof(double) == sizeof(long double)
|
|
(but the return type is set correctly with gcc)
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <complex.h>
|
|
|
|
#define __IS_FP(x) (sizeof((x)+1ULL) == sizeof((x)+1.0f))
|
|
#define __IS_CX(x) (__IS_FP(x) && sizeof(x) == sizeof((x)+I))
|
|
#define __IS_REAL(x) (__IS_FP(x) && 2*sizeof(x) == sizeof((x)+I))
|
|
|
|
#define __FLT(x) (__IS_REAL(x) && sizeof(x) == sizeof(float))
|
|
#define __LDBL(x) (__IS_REAL(x) && sizeof(x) == sizeof(long double) && sizeof(long double) != sizeof(double))
|
|
|
|
#define __FLTCX(x) (__IS_CX(x) && sizeof(x) == sizeof(float complex))
|
|
#define __DBLCX(x) (__IS_CX(x) && sizeof(x) == sizeof(double complex))
|
|
#define __LDBLCX(x) (__IS_CX(x) && sizeof(x) == sizeof(long double complex) && sizeof(long double) != sizeof(double))
|
|
|
|
/* return type */
|
|
|
|
#ifdef __GNUC__
|
|
/*
|
|
the result must be casted to the right type
|
|
(otherwise the result type is determined by the conversion
|
|
rules applied to all the function return types so it is long
|
|
double or long double complex except for integral functions)
|
|
|
|
this cannot be done in c99, so the typeof gcc extension is
|
|
used and that the type of ?: depends on wether an operand is
|
|
a null pointer constant or not
|
|
(in c11 _Generic can be used)
|
|
|
|
the c arguments below must be integer constant expressions
|
|
so they can be in null pointer constants
|
|
(__IS_FP above was carefully chosen this way)
|
|
*/
|
|
/* if c then t else void */
|
|
#define __type1(c,t) __typeof__(*(0?(t*)0:(void*)!(c)))
|
|
/* if c then t1 else t2 */
|
|
#define __type2(c,t1,t2) __typeof__(*(0?(__type1(c,t1)*)0:(__type1(!(c),t2)*)0))
|
|
/* cast to double when x is integral, otherwise use typeof(x) */
|
|
#define __RETCAST(x) ( \
|
|
__type2(__IS_FP(x), __typeof__(x), double))
|
|
/* 2 args case, should work for complex types (cpow) */
|
|
#define __RETCAST_2(x, y) ( \
|
|
__type2(__IS_FP(x) && __IS_FP(y), \
|
|
__typeof__((x)+(y)), \
|
|
__typeof__((x)+(y)+1.0)))
|
|
/* 3 args case (fma only) */
|
|
#define __RETCAST_3(x, y, z) ( \
|
|
__type2(__IS_FP(x) && __IS_FP(y) && __IS_FP(z), \
|
|
__typeof__((x)+(y)+(z)), \
|
|
__typeof__((x)+(y)+(z)+1.0)))
|
|
/* drop complex from the type of x */
|
|
/* TODO: wrong when sizeof(long double)==sizeof(double) */
|
|
#define __RETCAST_REAL(x) ( \
|
|
__type2(__IS_FP(x) && sizeof((x)+I) == sizeof(float complex), float, \
|
|
__type2(sizeof((x)+1.0+I) == sizeof(double complex), double, \
|
|
long double)))
|
|
/* add complex to the type of x */
|
|
#define __RETCAST_CX(x) (__typeof__(__RETCAST(x)0+I))
|
|
#else
|
|
#define __RETCAST(x)
|
|
#define __RETCAST_2(x, y)
|
|
#define __RETCAST_3(x, y, z)
|
|
#define __RETCAST_REAL(x)
|
|
#define __RETCAST_CX(x)
|
|
#endif
|
|
|
|
/* function selection */
|
|
|
|
#define __tg_real_nocast(fun, x) ( \
|
|
__FLT(x) ? fun ## f (x) : \
|
|
__LDBL(x) ? fun ## l (x) : \
|
|
fun(x) )
|
|
|
|
#define __tg_real(fun, x) (__RETCAST(x)__tg_real_nocast(fun, x))
|
|
|
|
#define __tg_real_2_1(fun, x, y) (__RETCAST(x)( \
|
|
__FLT(x) ? fun ## f (x, y) : \
|
|
__LDBL(x) ? fun ## l (x, y) : \
|
|
fun(x, y) ))
|
|
|
|
#define __tg_real_2(fun, x, y) (__RETCAST_2(x, y)( \
|
|
__FLT(x) && __FLT(y) ? fun ## f (x, y) : \
|
|
__LDBL((x)+(y)) ? fun ## l (x, y) : \
|
|
fun(x, y) ))
|
|
|
|
#define __tg_complex(fun, x) (__RETCAST_CX(x)( \
|
|
__FLTCX((x)+I) && __IS_FP(x) ? fun ## f (x) : \
|
|
__LDBLCX((x)+I) ? fun ## l (x) : \
|
|
fun(x) ))
|
|
|
|
#define __tg_complex_retreal(fun, x) (__RETCAST_REAL(x)( \
|
|
__FLTCX((x)+I) && __IS_FP(x) ? fun ## f (x) : \
|
|
__LDBLCX((x)+I) ? fun ## l (x) : \
|
|
fun(x) ))
|
|
|
|
#define __tg_real_complex(fun, x) (__RETCAST(x)( \
|
|
__FLTCX(x) ? c ## fun ## f (x) : \
|
|
__DBLCX(x) ? c ## fun (x) : \
|
|
__LDBLCX(x) ? c ## fun ## l (x) : \
|
|
__FLT(x) ? fun ## f (x) : \
|
|
__LDBL(x) ? fun ## l (x) : \
|
|
fun(x) ))
|
|
|
|
/* special cases */
|
|
|
|
#define __tg_real_remquo(x, y, z) (__RETCAST_2(x, y)( \
|
|
__FLT(x) && __FLT(y) ? remquof(x, y, z) : \
|
|
__LDBL((x)+(y)) ? remquol(x, y, z) : \
|
|
remquo(x, y, z) ))
|
|
|
|
#define __tg_real_fma(x, y, z) (__RETCAST_3(x, y, z)( \
|
|
__FLT(x) && __FLT(y) && __FLT(z) ? fmaf(x, y, z) : \
|
|
__LDBL((x)+(y)+(z)) ? fmal(x, y, z) : \
|
|
fma(x, y, z) ))
|
|
|
|
#define __tg_real_complex_pow(x, y) (__RETCAST_2(x, y)( \
|
|
__FLTCX((x)+(y)) && __IS_FP(x) && __IS_FP(y) ? cpowf(x, y) : \
|
|
__FLTCX((x)+(y)) ? cpow(x, y) : \
|
|
__DBLCX((x)+(y)) ? cpow(x, y) : \
|
|
__LDBLCX((x)+(y)) ? cpowl(x, y) : \
|
|
__FLT(x) && __FLT(y) ? powf(x, y) : \
|
|
__LDBL((x)+(y)) ? powl(x, y) : \
|
|
pow(x, y) ))
|
|
|
|
#define __tg_real_complex_fabs(x) (__RETCAST_REAL(x)( \
|
|
__FLTCX(x) ? cabsf(x) : \
|
|
__DBLCX(x) ? cabs(x) : \
|
|
__LDBLCX(x) ? cabsl(x) : \
|
|
__FLT(x) ? fabsf(x) : \
|
|
__LDBL(x) ? fabsl(x) : \
|
|
fabs(x) ))
|
|
|
|
/* suppress any macros in math.h or complex.h */
|
|
|
|
#undef acos
|
|
#undef acosh
|
|
#undef asin
|
|
#undef asinh
|
|
#undef atan
|
|
#undef atan2
|
|
#undef atanh
|
|
#undef carg
|
|
#undef cbrt
|
|
#undef ceil
|
|
#undef cimag
|
|
#undef conj
|
|
#undef copysign
|
|
#undef cos
|
|
#undef cosh
|
|
#undef cproj
|
|
#undef creal
|
|
#undef erf
|
|
#undef erfc
|
|
#undef exp
|
|
#undef exp2
|
|
#undef expm1
|
|
#undef fabs
|
|
#undef fdim
|
|
#undef floor
|
|
#undef fma
|
|
#undef fmax
|
|
#undef fmin
|
|
#undef fmod
|
|
#undef frexp
|
|
#undef hypot
|
|
#undef ilogb
|
|
#undef ldexp
|
|
#undef lgamma
|
|
#undef llrint
|
|
#undef llround
|
|
#undef log
|
|
#undef log10
|
|
#undef log1p
|
|
#undef log2
|
|
#undef logb
|
|
#undef lrint
|
|
#undef lround
|
|
#undef nearbyint
|
|
#undef nextafter
|
|
#undef nexttoward
|
|
#undef pow
|
|
#undef remainder
|
|
#undef remquo
|
|
#undef rint
|
|
#undef round
|
|
#undef scalbln
|
|
#undef scalbn
|
|
#undef sin
|
|
#undef sinh
|
|
#undef sqrt
|
|
#undef tan
|
|
#undef tanh
|
|
#undef tgamma
|
|
#undef trunc
|
|
|
|
/* tg functions */
|
|
|
|
#define acos(x) __tg_real_complex(acos, (x))
|
|
#define acosh(x) __tg_real_complex(acosh, (x))
|
|
#define asin(x) __tg_real_complex(asin, (x))
|
|
#define asinh(x) __tg_real_complex(asinh, (x))
|
|
#define atan(x) __tg_real_complex(atan, (x))
|
|
#define atan2(x,y) __tg_real_2(atan2, (x), (y))
|
|
#define atanh(x) __tg_real_complex(atanh, (x))
|
|
#define carg(x) __tg_complex_retreal(carg, (x))
|
|
#define cbrt(x) __tg_real(cbrt, (x))
|
|
#define ceil(x) __tg_real(ceil, (x))
|
|
#define cimag(x) __tg_complex_retreal(cimag, (x))
|
|
#define conj(x) __tg_complex(conj, (x))
|
|
#define copysign(x,y) __tg_real_2(copysign, (x), (y))
|
|
#define cos(x) __tg_real_complex(cos, (x))
|
|
#define cosh(x) __tg_real_complex(cosh, (x))
|
|
#define cproj(x) __tg_complex(cproj, (x))
|
|
#define creal(x) __tg_complex_retreal(creal, (x))
|
|
#define erf(x) __tg_real(erf, (x))
|
|
#define erfc(x) __tg_real(erfc, (x))
|
|
#define exp(x) __tg_real_complex(exp, (x))
|
|
#define exp2(x) __tg_real(exp2, (x))
|
|
#define expm1(x) __tg_real(expm1, (x))
|
|
#define fabs(x) __tg_real_complex_fabs(x)
|
|
#define fdim(x,y) __tg_real_2(fdim, (x), (y))
|
|
#define floor(x) __tg_real(floor, (x))
|
|
#define fma(x,y,z) __tg_real_fma((x), (y), (z))
|
|
#define fmax(x,y) __tg_real_2(fmax, (x), (y))
|
|
#define fmin(x,y) __tg_real_2(fmin, (x), (y))
|
|
#define fmod(x,y) __tg_real_2(fmod, (x), (y))
|
|
#define frexp(x,y) __tg_real_2_1(frexp, (x), (y))
|
|
#define hypot(x,y) __tg_real_2(hypot, (x), (y))
|
|
#define ilogb(x) __tg_real_nocast(ilogb, (x))
|
|
#define ldexp(x,y) __tg_real_2_1(ldexp, (x), (y))
|
|
#define lgamma(x) __tg_real(lgamma, (x))
|
|
#define llrint(x) __tg_real_nocast(llrint, (x))
|
|
#define llround(x) __tg_real_nocast(llround, (x))
|
|
#define log(x) __tg_real_complex(log, (x))
|
|
#define log10(x) __tg_real(log10, (x))
|
|
#define log1p(x) __tg_real(log1p, (x))
|
|
#define log2(x) __tg_real(log2, (x))
|
|
#define logb(x) __tg_real(logb, (x))
|
|
#define lrint(x) __tg_real_nocast(lrint, (x))
|
|
#define lround(x) __tg_real_nocast(lround, (x))
|
|
#define nearbyint(x) __tg_real(nearbyint, (x))
|
|
#define nextafter(x,y) __tg_real_2(nextafter, (x), (y))
|
|
#define nexttoward(x,y) __tg_real_2(nexttoward, (x), (y))
|
|
#define pow(x,y) __tg_real_complex_pow((x), (y))
|
|
#define remainder(x,y) __tg_real_2(remainder, (x), (y))
|
|
#define remquo(x,y,z) __tg_real_remquo((x), (y), (z))
|
|
#define rint(x) __tg_real(rint, (x))
|
|
#define round(x) __tg_real(round, (x))
|
|
#define scalbln(x,y) __tg_real_2_1(scalbln, (x), (y))
|
|
#define scalbn(x,y) __tg_real_2_1(scalbn, (x), (y))
|
|
#define sin(x) __tg_real_complex(sin, (x))
|
|
#define sinh(x) __tg_real_complex(sinh, (x))
|
|
#define sqrt(x) __tg_real_complex(sqrt, (x))
|
|
#define tan(x) __tg_real_complex(tan, (x))
|
|
#define tanh(x) __tg_real_complex(tanh, (x))
|
|
#define tgamma(x) __tg_real(tgamma, (x))
|
|
#define trunc(x) __tg_real(trunc, (x))
|
|
|
|
#endif
|