musl - an implementation of the standard library for Linux-based systems
Go to file
Rich Felker 97d35a552e move __BYTE_ORDER definition to alltypes.h
this change is motivated by the intersection of several factors.
presently, despite being a nonstandard header, endian.h is exposing
the unprefixed byte order macros and functions only if _BSD_SOURCE or
_GNU_SOURCE is defined. this is to accommodate use of endian.h from
other headers, including bits headers, which need to define structure
layout in terms of endianness. with time64 switch-over, even more
headers will need to do this.

at the same time, the resolution of Austin Group issue 162 makes
endian.h a standard header for POSIX-future, requiring that it expose
the unprefixed macros and the functions even in standards-conforming
profiles. changes to meet this new requirement would break existing
internal usage of endian.h by causing it to violate namespace where
it's used.

instead, have the arch's alltypes.h define __BYTE_ORDER, either as a
fixed constant or depending on the right arch-specific predefined
macros for determining endianness. explicit literals 1234 and 4321 are
used instead of __LITTLE_ENDIAN and __BIG_ENDIAN so that there's no
danger of getting the wrong result if a macro is undefined and
implicitly evaluates to 0 at the preprocessor level.

the powerpc (32-bit) bits/endian.h being removed had logic for varying
endianness, but our powerpc arch has never supported that and has
always been big-endian-only. this logic is not carried over to the new
__BYTE_ORDER definition in alltypes.h.
2019-10-17 15:55:15 -04:00
arch move __BYTE_ORDER definition to alltypes.h 2019-10-17 15:55:15 -04:00
crt remove unnecessary and problematic _Noreturn from crt/ldso startup 2019-06-25 19:05:40 -04:00
dist add another example option to dist/config.mak 2012-04-24 16:49:11 -04:00
include move __BYTE_ORDER definition to alltypes.h 2019-10-17 15:55:15 -04:00
ldso fix regression whereby main thread didn't get TLS relocations 2019-08-13 21:53:30 -04:00
src mips: add single-instruction math functions 2019-10-14 10:04:47 -04:00
tools fix musl-gcc wrapper to be compatible with default-pie gcc toolchains 2018-08-02 19:15:48 -04:00
.gitignore remove obsolete gitignore rules 2016-07-06 00:21:25 -04:00
COPYRIGHT add Arm to the copyright file 2019-10-06 20:27:21 -04:00
INSTALL document mips r6 in INSTALL file 2019-09-27 00:22:48 -04:00
Makefile overhaul internally-public declarations using wrapper headers 2018-09-12 14:34:33 -04:00
README update version reference in the README file 2014-06-25 14:16:53 -04:00
VERSION release 1.1.24 2019-10-13 17:58:27 -04:00
WHATSNEW release 1.1.24 2019-10-13 17:58:27 -04:00
configure configure: make AR and RANLIB customizable 2019-07-04 12:03:18 -04:00
dynamic.list fix regression in access to optopt object 2018-11-19 13:20:41 -05:00

README

    musl libc

musl, pronounced like the word "mussel", is an MIT-licensed
implementation of the standard C library targetting the Linux syscall
API, suitable for use in a wide range of deployment environments. musl
offers efficient static and dynamic linking support, lightweight code
and low runtime overhead, strong fail-safe guarantees under correct
usage, and correctness in the sense of standards conformance and
safety. musl is built on the principle that these goals are best
achieved through simple code that is easy to understand and maintain.

The 1.1 release series for musl features coverage for all interfaces
defined in ISO C99 and POSIX 2008 base, along with a number of
non-standardized interfaces for compatibility with Linux, BSD, and
glibc functionality.

For basic installation instructions, see the included INSTALL file.
Information on full musl-targeted compiler toolchains, system
bootstrapping, and Linux distributions built on musl can be found on
the project website:

    http://www.musl-libc.org/