originally the namespace-infringing "large file support" interfaces
were included as part of glibc-ABI-compat, with the intent that they
not be used for linking, since our off_t is and always has been
unconditionally 64-bit and since we usually do not aim to support
nonstandard interfaces when there is an equivalent standard interface.
unfortunately, having the symbols present and available for linking
caused configure scripts to detect them and attempt to use them
without declarations, producing all the expected ill effects that
entails.
as a result, commit 2dd8d5e1b8 was made
to prevent this, using macros to redirect the LFS64 names to the
standard names, conditional on _GNU_SOURCE or _LARGEFILE64_SOURCE.
however, this has turned out to be a source of further problems,
especially since g++ defines _GNU_SOURCE by default. in particular,
the presence of these names as macros breaks a lot of valid code.
this commit removes all the LFS64 symbols and replaces them with a
mechanism in the dynamic linker symbol lookup failure path to retry
with the spurious "64" removed from the symbol name. in the future,
if/when the rest of glibc-ABI-compat is moved out of libc, this can be
removed.
commit ae388becb5 accidentally
introduced #define SYSCALL_NO_TLS 1 in mmap.c, which was probably a
stale change left around from unrelated syscall timing measurements.
reverse it.
the definitions of SO_TIMESTAMP* changed on 32-bit archs in commit
3814333964 to the new versions that
provide 64-bit versions of timeval/timespec structure in control
message payload. socket options, being state attached to the socket
rather than function calls, are not trivial to implement as fallbacks
on ENOSYS, and support for them was initially omitted on the
assumption that the ioctl-based polling alternatives (SIOCGSTAMP*)
could be used instead by applications if setsockopt fails.
unfortunately, it turns out that SO_TIMESTAMP is sufficiently old and
widely supported that a number of applications assume it's available
and treat errors as fatal.
this patch introduces emulation of SO_TIMESTAMP[NS] on pre-time64
kernels by falling back to setting the "_OLD" (time32) versions of the
options if the time64 ones are not recognized, and performing
translation of the SCM_TIMESTAMP[NS] control messages in recvmsg.
since recvmsg does not know whether its caller is legacy time32 code
or time64, it performs translation for any SCM_TIMESTAMP[NS]_OLD
control messages it sees, leaving the original time32 timestamp as-is
(it can't be rewritten in-place anyway, and memmove would be mildly
expensive) and appending the converted time64 control message at the
end of the buffer. legacy time32 callers will see the converted one as
a spurious control message of unknown type; time64 callers running on
pre-time64 kernels will see the original one as a spurious control
message of unknown type. a time64 caller running on a kernel with
native time64 support will only see the time64 version of the control
message.
emulation of SO_TIMESTAMPING is not included at this time since (1)
applications which use it seem to be prepared for the possibility that
it's not present or working, and (2) it can also be used in sendmsg
control messages, in a manner that looks complex to emulate
completely, and costly even when running on a time64-supporting
kernel.
corresponding changes in recvmmsg are not made at this time; they will
be done separately.
the LFS64 macro was not self-documenting and barely saved any
characters. simply use weak_alias directly so that it's clear what's
being done, and doesn't depend on a header to provide a strange macro.
libc.h was intended to be a header for access to global libc state and
related interfaces, but ended up included all over the place because
it was the way to get the weak_alias macro. most of the inclusions
removed here are places where weak_alias was needed. a few were
recently introduced for hidden. some go all the way back to when
libc.h defined CANCELPT_BEGIN and _END, and all (wrongly implemented)
cancellation points had to include it.
remaining spurious users are mostly callers of the LOCK/UNLOCK macros
and files that use the LFS64 macro to define the awful *64 aliases.
in a few places, new inclusion of libc.h is added because several
internal headers no longer implicitly include libc.h.
declarations for __lockfile and __unlockfile are moved from libc.h to
stdio_impl.h so that the latter does not need libc.h. putting them in
libc.h made no sense at all, since the macros in stdio_impl.h are
needed to use them correctly anyway.
commits leading up to this one have moved the vast majority of
libc-internal interface declarations to appropriate internal headers,
allowing them to be type-checked and setting the stage to limit their
visibility. the ones that have not yet been moved are mostly
namespace-protected aliases for standard/public interfaces, which
exist to facilitate implementing plain C functions in terms of POSIX
functionality, or C or POSIX functionality in terms of extensions that
are not standardized. some don't quite fit this description, but are
"internally public" interfacs between subsystems of libc.
rather than create a number of newly-named headers to declare these
functions, and having to add explicit include directives for them to
every source file where they're needed, I have introduced a method of
wrapping the corresponding public headers.
parallel to the public headers in $(srcdir)/include, we now have
wrappers in $(srcdir)/src/include that come earlier in the include
path order. they include the public header they're wrapping, then add
declarations for namespace-protected versions of the same interfaces
and any "internally public" interfaces for the subsystem they
correspond to.
along these lines, the wrapper for features.h is now responsible for
the definition of the hidden, weak, and weak_alias macros. this means
source files will no longer need to include any special headers to
access these features.
over time, it is my expectation that the scope of what is "internally
public" will expand, reducing the number of source files which need to
include *_impl.h and related headers down to those which are actually
implementing the corresponding subsystems, not just using them.
under some conditions, the mmap syscall wrongly fails with EPERM
instead of ENOMEM when memory is exhausted; this is probably the
result of the kernel trying to fit the allocation somewhere that
crosses into the kernel range or below mmap_min_addr. in any case it's
a conformance bug, so work around it. for now, only handle the case of
anonymous mappings with no requested address; in other cases EPERM may
be a legitimate error.
this indirectly fixes the possibility of malloc failing with the wrong
errno value.
normally 32-bit archs use the mmap2 syscall and are limited to an
offset of 2^32 pages. however some 32-bit archs (mainly ILP32-on-64
ones like x32) have 64-bit syscall argument slots and thus can accept
the full range. don't artifically limit them.
since mremap with the MREMAP_FIXED flag is an operation that unmaps
existing mappings, it needs to use the vm lock mechanism to ensure
that any in-progress synchronization operations using vm identities
from before the call have finished.
also, the variadic argument was erroneously being read even if the
MREMAP_FIXED flag was not passed. in practice this didn't break
anything, but it's UB and in theory LTO could turn it into a hard
error.
this global lock allows certain unlock-type primitives to exclude
mmap/munmap operations which could change the identity of virtual
addresses while references to them still exist.
the original design mistakenly assumed mmap/munmap would conversely
need to exclude the same operations which exclude mmap/munmap, so the
vmlock was implemented as a sort of 'symmetric recursive rwlock'. this
turned out to be unnecessary.
commit 25d12fc0fc already shortened the
interval during which mmap/munmap held their side of the lock, but
left the inappropriate lock design and some inefficiency.
the new design uses a separate function, __vm_wait, which does not
hold any lock itself and only waits for lock users which were already
present when it was called to release the lock. this is sufficient
because of the way operations that need to be excluded are sequenced:
the "unlock-type" operations using the vmlock need only block
mmap/munmap operations that are precipitated by (and thus sequenced
after) the atomic-unlock they perform while holding the vmlock.
this allows for a spectacular lack of synchronization in the __vm_wait
function itself.
The intent of this is to avoid name space pollution of the C threads
implementation.
This has two sides to it. First we have to provide symbols that wouldn't
pollute the name space for the C threads implementation. Second we have
to clean up some internal uses of POSIX functions such that they don't
implicitly drag in such symbols.
the whole point of this locking is to prevent munmap, or mmap with
MAP_FIXED, from deallocating virtual addresses, or changing the
backing a given virtual address refers to, during certain race windows
involving self-synchronized unmapping or destruction of pthread
synchronization objects. there is no need for exclusion in the other
direction, so it suffices to take the lock momentarily and release it
before making the syscall, rather than holding it across the syscall.
PAGE_SIZE was hardcoded to 4096, which is historically what most
systems use, but on several archs it is a kernel config parameter,
user space can only know it at execution time from the aux vector.
PAGE_SIZE and PAGESIZE are not defined on archs where page size is
a runtime parameter, applications should use sysconf(_SC_PAGE_SIZE)
to query it. Internally libc code defines PAGE_SIZE to libc.page_size,
which is set to aux[AT_PAGESZ] in __init_libc and early in __dynlink
as well. (Note that libc.page_size can be accessed without GOT, ie.
before relocations are done)
Some fpathconf settings are hardcoded to 4096, these should be actually
queried from the filesystem using statfs.
internally, other parts of the library assume sizes don't overflow
ssize_t and/or ptrdiff_t, and the way this assumption is made valid is
by preventing creating of such large objects. malloc already does so,
but the check was missing from mmap.
this is also a quality of implementation issue: even if the
implementation internally could handle such objects, applications
could inadvertently invoke undefined behavior by subtracting pointers
within an object. it is very difficult to guard against this in
applications, so a good implementation should simply ensure that it
does not happen.
the previous logic was assuming the kernel would give EINVAL when
passed an invalid address, but instead with MAP_FIXED it was giving
EPERM, as it considered this an attempt to map over kernel memory.
instead of trying to get the kernel to do the rigth thing, the new
code just handles the error in userspace.
I have also cleaned up the code to use a single mask to check for
invalid low bits and unsupported high bits, so it's simpler and more
clearly correct. the old code was actually wrong for sizeof(long)
smaller than sizeof(off_t) but not equal to 4; now it should be
correct for all possibilities.
for 64-bit systems, the low-bits test is new and extraneous (the
kernel should catch the error anyway when the mmap2 syscall is not
used), but it's cheap anyway. if this is an issue, the OFF_MASK
definition could be tweaked to omit the low bits when SYS_mmap2 is not
defined.
this function was overly complicated and not even obviously correct.
avoid using openat/linkat just like in shm_open, and instead expand
pathname using code shared with shm_open. remove bogus (and dangerous,
with priorities) use of spinlocks.
this commit also heavily streamlines the code and ensures there are no
failure cases that can happen after a new semaphore has been created
in the filesystem, since that case is unreportable.
this implementation is rather heavy-weight, but it's the first
solution i've found that's actually correct. all waiters actually wait
twice at the barrier so that they can synchronize exit, and they hold
a "vm lock" that prevents changes to virtual memory mappings (and
blocks pthread_barrier_destroy) until all waiters are finished
inspecting the barrier.
thus, it is safe for any thread to destroy and/or unmap the barrier's
memory as soon as pthread_barrier_wait returns, without further
synchronization.
per POSIX: The mprotect() function shall change the access protections
to be that specified by prot for those whole pages containing any part
of the address space of the process starting at address addr and
continuing for len bytes.
on the other hand, linux mprotect fails with EINVAL if the base
address and/or length is not page-aligned, so we have to align them
before making the syscall.
- hide all the legacy xxxxxx32 name cruft in syscall.h so the actual
source files can be clean and uniform across all archs.
- cleanup llseek/lseek and mmap2/mmap handling for 32/64 bit systems
- alternate implementation for nice if the target lacks nice syscall