all past and current kernel versions have done so, but there seems to
be no reason it's necessary and the sentiment from everyone I've asked
has been that we should not rely on it. instead, use r7 (an argument
register) which will necessarily be preserved upon syscall restart.
however this only works for 0-3 argument syscalls, and we have to
resort to the function call for 4-argument syscalls.
this drastically reduces the size of some functions which are purely
syscall wrappers.
disabled for clang due to known bugs satisfying register constraints.
now public syscall.h only exposes __NR_* and SYS_* constants and the
variadic syscall function. no macros or inline functions, no
__syscall_ret or other internal details, no 16-/32-bit legacy syscall
renaming, etc. this logic has all been moved to src/internal/syscall.h
with the arch-specific parts in arch/$(ARCH)/syscall_arch.h, and the
amount of arch-specific stuff has been reduced to a minimum.
changes still need to be reviewed/double-checked. minimal testing on
i386 and mips has already been performed.
clang does not presently support the "v" constraint we want to use to
get the result from $3, and trying to use register...__asm__("$3") to
do the same invokes serious compiler bugs. so for now, i'm working
around the issue with an extra temp register and putting $3 in the
clobber list instead of using it as output. when the bugs in clang are
fixed, this issue should be revisited to generate smaller/faster code
like what gcc gets.
while musl itself requires a c99 compiler, some applications insist on
being compiled with c89 compilers, and use of "inline" in the headers
was breaking them. much of this had been avoided already by just
skipping the inline keyword in pre-c99 compilers or modes, but this
new unified solution is cleaner and may/should result in better code
generation in the default gcc configuration.
not heavily tested, but the basics are working. the basic concept is
that the dynamic linker entry point code invokes a pure-PIC (no global
accesses) C function in reloc.h to perform the early GOT relocations
needed to make the dynamic linker itself functional, then invokes
__dynlink like on other archs. since mips uses some ugly arch-specific
hacks to optimize relocating the GOT (rather than just using the
normal DT_REL[A] tables like on other archs), the dynamic linker has
been modified slightly to support calling arch-specific relocation
code in reloc.h.
most of the actual mips-specific behavior was developed by reading the
output of readelf on libc.so and simple executable files. i could not
find good reference information on which relocation types need to be
supported or their semantics, so it's possible that some legitimate
usage cases will not work yet.
also fix the alignment of jmp_buf to meet the abi. linux always
emulates fpu on mips if it's not present, so enabling this code
unconditionally is "safe" but may be slow. in the long term it may be
preferable to find a way to disable it on soft float builds.
the fields in the mcontext_t are long long (for no good reason) even
on 32-bit mips, so the offset of the instruction pointer (as a word)
varies depending on endianness.
the kernel wrongly expects the cmsg length field to be size_t instead
of socklen_t. in order to work around the issue, we have to impose a
length limit and copy to a local buffer. the length limit should be
more than sufficient for any real-world use; these headers are only
used for passing file descriptors and permissions between processes
over unix sockets.
basically, this version of the code was obtained by starting with
rdp's work from his ellcc source tree, adapting it to musl's build
system and coding style, auditing the bits headers for discrepencies
with kernel definitions or glibc/LSB ABI or large file issues, fixing
up incompatibility with the old binutils from aboriginal linux, and
adding some new special cases to deal with the oddities of sigaction
and pipe syscall interfaces on mips.
at present, minimal test programs work, but some interfaces are broken
or missing. threaded programs probably will not link.