math: fix exp.s on i386 and x86_64 so the exception flags are correct

exp(inf), exp(-inf), exp(nan) used to raise wrong flags
This commit is contained in:
nsz 2012-08-08 20:18:16 +02:00
parent ae0b9da48c
commit 1fb0169154
2 changed files with 37 additions and 42 deletions

View File

@ -69,18 +69,18 @@ exp:
exp2:
fldl 4(%esp)
1: pushl $0x467ff000
flds (%esp)
flds (%esp) # 16380
xorl %eax,%eax
pushl $0x80000000
push %eax
fld %st(1)
fabs
fucom %st(1)
fucomp %st(1)
fnstsw
fstp %st(0)
fstp %st(0)
sahf
ja 2f
ja 3f # |x| > 16380
jp 2f # x is nan (avoid invalid except in fistp)
fld %st(0)
fistpl 8(%esp)
fildl 8(%esp)
@ -90,30 +90,27 @@ exp2:
add %eax,8(%esp)
f2xm1
fld1
faddp
fldt (%esp)
faddp # 2^(x-rint(x))
fldt (%esp) # 2^rint(x)
fmulp
fstp %st(1)
add $12,%esp
2: add $12,%esp
ret
2: fld %st(0)
3: fld %st(0)
fstpt (%esp)
mov 9(%esp),%ah
and $0x7f,%ah
cmp $0x7f,%ah
jne 1f
decb 9(%esp)
fstp %st(0)
fldt (%esp)
1: fld %st(0)
frndint
fxch %st(1)
fsub %st(1)
f2xm1
fld1
faddp
fscale
mov 8(%esp),%ax
and $0x7fff,%ax
cmp $0x7fff,%ax
je 1f # x = +-inf
fld %st(1)
frndint
fxch %st(2)
fsub %st(2) # st(0)=x-rint(x), st(1)=1, st(2)=rint(x)
f2xm1
faddp # 2^(x-rint(x))
1: fscale
fstp %st(1)
add $12,%esp
ret

View File

@ -40,7 +40,7 @@ exp2l:
mov %eax,-20(%rsp)
xor %eax,%eax
mov %eax,-24(%rsp)
flds -16(%rsp)
flds -16(%rsp) # 16380
fld %st(1)
fabs
fucom %st(1)
@ -48,7 +48,8 @@ exp2l:
fstp %st(0)
fstp %st(0)
sahf
ja 2f
ja 3f # |x| > 16380
jp 2f # x is nan (avoid invalid except in fistp)
fld %st(0)
fistpl -16(%rsp)
fildl -16(%rsp)
@ -58,28 +59,25 @@ exp2l:
add %eax,-16(%rsp)
f2xm1
fld1
faddp
fldt -24(%rsp)
faddp # 2^(x-rint(x))
fldt -24(%rsp) # 2^rint(x)
fmulp
fstp %st(1)
2: fstp %st(1)
ret
2: fld %st(0)
3: fld %st(0)
fstpt -24(%rsp)
mov -15(%rsp),%ah
and $0x7f,%ah
cmp $0x7f,%ah
jne 1f
decb -15(%rsp)
fstp %st(0)
fldt -24(%rsp)
1: fld %st(0)
frndint
fxch %st(1)
fsub %st(1)
f2xm1
fld1
faddp
fscale
mov -15(%rsp),%ax
and $0x7fff,%ax
cmp $0x7fff,%ax
je 1f # x = +-inf
fld %st(1)
frndint
fxch %st(2)
fsub %st(2) # st(0)=x-rint(x), st(1)=1, st(2)=rint(x)
f2xm1
faddp # 2^(x-rint(x))
1: fscale
fstp %st(1)
ret