musl/src/ldso/dynlink.c

1675 lines
42 KiB
C
Raw Normal View History

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stddef.h>
#include <string.h>
#include <unistd.h>
#include <stdint.h>
#include <elf.h>
#include <sys/mman.h>
#include <limits.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <errno.h>
#include <link.h>
#include <setjmp.h>
#include <pthread.h>
2011-08-16 04:24:36 +00:00
#include <ctype.h>
#include <dlfcn.h>
#include "pthread_impl.h"
#include "libc.h"
static int errflag;
static char errbuf[128];
#ifdef SHARED
#if ULONG_MAX == 0xffffffff
typedef Elf32_Ehdr Ehdr;
typedef Elf32_Phdr Phdr;
typedef Elf32_Sym Sym;
#define R_TYPE(x) ((x)&255)
#define R_SYM(x) ((x)>>8)
#else
typedef Elf64_Ehdr Ehdr;
typedef Elf64_Phdr Phdr;
typedef Elf64_Sym Sym;
#define R_TYPE(x) ((x)&0xffffffff)
#define R_SYM(x) ((x)>>32)
#endif
#define MAXP2(a,b) (-(-(a)&-(b)))
#define ALIGN(x,y) ((x)+(y)-1 & -(y))
struct debug {
int ver;
void *head;
void (*bp)(void);
int state;
void *base;
};
struct td_index {
size_t args[2];
struct td_index *next;
};
struct dso {
unsigned char *base;
char *name;
size_t *dynv;
struct dso *next, *prev;
Phdr *phdr;
int phnum;
size_t phentsize;
int refcnt;
Sym *syms;
uint32_t *hashtab;
uint32_t *ghashtab;
int16_t *versym;
char *strings;
unsigned char *map;
size_t map_len;
dev_t dev;
ino_t ino;
signed char global;
char relocated;
char constructed;
char kernel_mapped;
struct dso **deps, *needed_by;
char *rpath_orig, *rpath;
void *tls_image;
size_t tls_len, tls_size, tls_align, tls_id, tls_offset;
2014-03-25 12:13:27 +00:00
size_t relro_start, relro_end;
void **new_dtv;
unsigned char *new_tls;
make all objects used with atomic operations volatile the memory model we use internally for atomics permits plain loads of values which may be subject to concurrent modification without requiring that a special load function be used. since a compiler is free to make transformations that alter the number of loads or the way in which loads are performed, the compiler is theoretically free to break this usage. the most obvious concern is with atomic cas constructs: something of the form tmp=*p;a_cas(p,tmp,f(tmp)); could be transformed to a_cas(p,*p,f(*p)); where the latter is intended to show multiple loads of *p whose resulting values might fail to be equal; this would break the atomicity of the whole operation. but even more fundamental breakage is possible. with the changes being made now, objects that may be modified by atomics are modeled as volatile, and the atomic operations performed on them by other threads are modeled as asynchronous stores by hardware which happens to be acting on the request of another thread. such modeling of course does not itself address memory synchronization between cores/cpus, but that aspect was already handled. this all seems less than ideal, but it's the best we can do without mandating a C11 compiler and using the C11 model for atomics. in the case of pthread_once_t, the ABI type of the underlying object is not volatile-qualified. so we are assuming that accessing the object through a volatile-qualified lvalue via casts yields volatile access semantics. the language of the C standard is somewhat unclear on this matter, but this is an assumption the linux kernel also makes, and seems to be the correct interpretation of the standard.
2015-03-04 03:50:02 +00:00
volatile int new_dtv_idx, new_tls_idx;
struct td_index *td_index;
struct dso *fini_next;
char *shortname;
char buf[];
};
struct symdef {
Sym *sym;
struct dso *dso;
};
enum {
REL_ERR,
REL_SYMBOLIC,
REL_GOT,
REL_PLT,
REL_RELATIVE,
REL_OFFSET,
REL_OFFSET32,
REL_COPY,
REL_SYM_OR_REL,
REL_TLS, /* everything past here is TLS */
REL_DTPMOD,
REL_DTPOFF,
REL_TPOFF,
REL_TPOFF_NEG,
REL_TLSDESC,
};
#include "reloc.h"
always initialize thread pointer at program start this is the first step in an overhaul aimed at greatly simplifying and optimizing everything dealing with thread-local state. previously, the thread pointer was initialized lazily on first access, or at program startup if stack protector was in use, or at certain random places where inconsistent state could be reached if it were not initialized early. while believed to be fully correct, the logic was fragile and non-obvious. in the first phase of the thread pointer overhaul, support is retained (and in some cases improved) for systems/situation where loading the thread pointer fails, e.g. old kernels. some notes on specific changes: - the confusing use of libc.main_thread as an indicator that the thread pointer is initialized is eliminated in favor of an explicit has_thread_pointer predicate. - sigaction no longer needs to ensure that the thread pointer is initialized before installing a signal handler (this was needed to prevent a situation where the signal handler caused the thread pointer to be initialized and the subsequent sigreturn cleared it again) but it still needs to ensure that implementation-internal thread-related signals are not blocked. - pthread tsd initialization for the main thread is deferred in a new manner to minimize bloat in the static-linked __init_tp code. - pthread_setcancelstate no longer needs special handling for the situation before the thread pointer is initialized. it simply fails on systems that cannot support a thread pointer, which are non-conforming anyway. - pthread_cleanup_push/pop now check for missing thread pointer and nop themselves out in this case, so stdio no longer needs to avoid the cancellable path when the thread pointer is not available. a number of cases remain where certain interfaces may crash if the system does not support a thread pointer. at this point, these should be limited to pthread interfaces, and the number of such cases should be fewer than before.
2014-03-24 20:57:11 +00:00
int __init_tp(void *);
add support for init/fini array in main program, and greatly simplify modern (4.7.x and later) gcc uses init/fini arrays, rather than the legacy _init/_fini function pasting and crtbegin/crtend ctors/dtors system, on most or all archs. some archs had already switched a long time ago. without following this change, global ctors/dtors will cease to work under musl when building with new gcc versions. the most surprising part of this patch is that it actually reduces the size of the init code, for both static and shared libc. this is achieved by (1) unifying the handling main program and shared libraries in the dynamic linker, and (2) eliminating the glibc-inspired rube goldberg machine for passing around init and fini function pointers. to clarify, some background: the function signature for __libc_start_main was based on glibc, as part of the original goal of being able to run some glibc-linked binaries. it worked by having the crt1 code, which is linked into every application, static or dynamic, obtain and pass pointers to the init and fini functions, which __libc_start_main is then responsible for using and recording for later use, as necessary. however, in neither the static-linked nor dynamic-linked case do we actually need crt1.o's help. with dynamic linking, all the pointers are available in the _DYNAMIC block. with static linking, it's safe to simply access the _init/_fini and __init_array_start, etc. symbols directly. obviously changing the __libc_start_main function signature in an incompatible way would break both old musl-linked programs and glibc-linked programs, so let's not do that. instead, the function can just ignore the information it doesn't need. new archs need not even provide the useless args in their versions of crt1.o. existing archs should continue to provide it as long as there is an interest in having newly-linked applications be able to run on old versions of musl; at some point in the future, this support can be removed.
2013-07-21 07:00:54 +00:00
void __init_libc(char **, char *);
const char *__libc_get_version(void);
static struct builtin_tls {
char c;
struct pthread pt;
void *space[16];
} builtin_tls[1];
#define MIN_TLS_ALIGN offsetof(struct builtin_tls, pt)
static struct dso *head, *tail, *ldso, *fini_head;
static char *env_path, *sys_path;
static unsigned long long gencnt;
static int runtime;
static int ldd_mode;
static int ldso_fail;
static int noload;
static jmp_buf *rtld_fail;
static pthread_rwlock_t lock;
static struct debug debug;
static size_t tls_cnt, tls_offset, tls_align = MIN_TLS_ALIGN;
static size_t static_tls_cnt;
static pthread_mutex_t init_fini_lock = { ._m_type = PTHREAD_MUTEX_RECURSIVE };
struct debug *_dl_debug_addr = &debug;
#define AUX_CNT 38
#define DYN_CNT 34
static void decode_vec(size_t *v, size_t *a, size_t cnt)
{
memset(a, 0, cnt*sizeof(size_t));
for (; v[0]; v+=2) if (v[0]<cnt) {
a[0] |= 1ULL<<v[0];
a[v[0]] = v[1];
}
}
static int search_vec(size_t *v, size_t *r, size_t key)
{
for (; v[0]!=key; v+=2)
if (!v[0]) return 0;
*r = v[1];
return 1;
}
static void error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vsnprintf(errbuf, sizeof errbuf, fmt, ap);
va_end(ap);
if (runtime) longjmp(*rtld_fail, 1);
dprintf(2, "%s\n", errbuf);
ldso_fail = 1;
}
static uint32_t sysv_hash(const char *s0)
{
const unsigned char *s = (void *)s0;
uint_fast32_t h = 0;
while (*s) {
h = 16*h + *s++;
h ^= h>>24 & 0xf0;
}
return h & 0xfffffff;
}
static uint32_t gnu_hash(const char *s0)
{
const unsigned char *s = (void *)s0;
uint_fast32_t h = 5381;
for (; *s; s++)
h = h*33 + *s;
return h;
}
static Sym *sysv_lookup(const char *s, uint32_t h, struct dso *dso)
{
size_t i;
2012-08-05 06:38:35 +00:00
Sym *syms = dso->syms;
uint32_t *hashtab = dso->hashtab;
char *strings = dso->strings;
for (i=hashtab[2+h%hashtab[0]]; i; i=hashtab[2+hashtab[0]+i]) {
if ((!dso->versym || dso->versym[i] >= 0)
&& (!strcmp(s, strings+syms[i].st_name)))
return syms+i;
}
return 0;
}
static Sym *gnu_lookup(const char *s, uint32_t h1, struct dso *dso)
{
Sym *syms = dso->syms;
char *strings = dso->strings;
uint32_t *hashtab = dso->ghashtab;
uint32_t nbuckets = hashtab[0];
uint32_t *buckets = hashtab + 4 + hashtab[2]*(sizeof(size_t)/4);
uint32_t h2;
uint32_t *hashval;
uint32_t i = buckets[h1 % nbuckets];
if (!i) return 0;
hashval = buckets + nbuckets + (i - hashtab[1]);
for (h1 |= 1; ; i++) {
h2 = *hashval++;
if ((!dso->versym || dso->versym[i] >= 0)
&& (h1 == (h2|1)) && !strcmp(s, strings + syms[i].st_name))
return syms+i;
if (h2 & 1) break;
}
return 0;
}
#define OK_TYPES (1<<STT_NOTYPE | 1<<STT_OBJECT | 1<<STT_FUNC | 1<<STT_COMMON | 1<<STT_TLS)
#define OK_BINDS (1<<STB_GLOBAL | 1<<STB_WEAK | 1<<STB_GNU_UNIQUE)
fix regression in mips dynamic linker this issue caused the address of functions in shared libraries to resolve to their PLT thunks in the main program rather than their correct addresses. it was observed causing crashes, though the mechanism of the crash was not thoroughly investigated. since the issue is very subtle, it calls for some explanation: on all well-behaved archs, GOT entries that belong to the PLT use a special relocation type, typically called JMP_SLOT, so that the dynamic linker can avoid having the jump destinations for the PLT resolve to PLT thunks themselves (they also provide a definition for the symbol, which must be used whenever the address of the function is taken so that all DSOs see the same address). however, the traditional mips PIC ABI lacked such a JMP_SLOT relocation type, presumably because, due to the way PIC works, the address of the PLT thunk was never needed and could always be ignored. prior to commit adf94c19666e687a728bbf398f9a88ea4ea19996, the mips version of reloc.h contained a hack that caused all symbol lookups to be treated like JMP_SLOT, inhibiting undefined symbols from ever being used to resolve symbolic relocations. this hack goes all the way back to commit babf820180368f00742ec65b2050a82380d7c542, when the mips dynamic linker was first made usable. during the recent refactoring to eliminate arch-specific relocation processing (commit adf94c19666e687a728bbf398f9a88ea4ea19996), this hack was overlooked and no equivalent functionality was provided in the new code. fixing the problem is not as simple as adding back an equivalent hack, since there is now also a "non-PIC ABI" that can be used for the main executable, which actually does use a PLT. the closest thing to official documentation I could find for this ABI is nonpic.txt, attached to Message-ID: 20080701202236.GA1534@caradoc.them.org, which can be found in the gcc mailing list archives and elsewhere. per this document, undefined symbols corresponding to PLT thunks have the STO_MIPS_PLT bit set in the symbol's st_other field. thus, I have added an arch-specific rule for mips, applied at the find_sym level rather than the relocation level, to reject undefined symbols with the STO_MIPS_PLT bit clear. the previous hack of treating all mips relocations as JMP_SLOT-like, rather than rejecting the unwanted symbols in find_sym, probably also caused dlsym to wrongly return PLT thunks in place of the correct address of a function under at least some conditions. this should now be fixed, at least for global-scope symbol lookups.
2014-06-30 05:18:14 +00:00
#ifndef ARCH_SYM_REJECT_UND
#define ARCH_SYM_REJECT_UND(s) 0
#endif
static struct symdef find_sym(struct dso *dso, const char *s, int need_def)
{
uint32_t h = 0, gh = 0;
struct symdef def = {0};
for (; dso; dso=dso->next) {
Sym *sym;
if (!dso->global) continue;
if (dso->ghashtab) {
if (!gh) gh = gnu_hash(s);
sym = gnu_lookup(s, gh, dso);
} else {
if (!h) h = sysv_hash(s);
sym = sysv_lookup(s, h, dso);
}
if (!sym) continue;
if (!sym->st_shndx)
fix regression in mips dynamic linker this issue caused the address of functions in shared libraries to resolve to their PLT thunks in the main program rather than their correct addresses. it was observed causing crashes, though the mechanism of the crash was not thoroughly investigated. since the issue is very subtle, it calls for some explanation: on all well-behaved archs, GOT entries that belong to the PLT use a special relocation type, typically called JMP_SLOT, so that the dynamic linker can avoid having the jump destinations for the PLT resolve to PLT thunks themselves (they also provide a definition for the symbol, which must be used whenever the address of the function is taken so that all DSOs see the same address). however, the traditional mips PIC ABI lacked such a JMP_SLOT relocation type, presumably because, due to the way PIC works, the address of the PLT thunk was never needed and could always be ignored. prior to commit adf94c19666e687a728bbf398f9a88ea4ea19996, the mips version of reloc.h contained a hack that caused all symbol lookups to be treated like JMP_SLOT, inhibiting undefined symbols from ever being used to resolve symbolic relocations. this hack goes all the way back to commit babf820180368f00742ec65b2050a82380d7c542, when the mips dynamic linker was first made usable. during the recent refactoring to eliminate arch-specific relocation processing (commit adf94c19666e687a728bbf398f9a88ea4ea19996), this hack was overlooked and no equivalent functionality was provided in the new code. fixing the problem is not as simple as adding back an equivalent hack, since there is now also a "non-PIC ABI" that can be used for the main executable, which actually does use a PLT. the closest thing to official documentation I could find for this ABI is nonpic.txt, attached to Message-ID: 20080701202236.GA1534@caradoc.them.org, which can be found in the gcc mailing list archives and elsewhere. per this document, undefined symbols corresponding to PLT thunks have the STO_MIPS_PLT bit set in the symbol's st_other field. thus, I have added an arch-specific rule for mips, applied at the find_sym level rather than the relocation level, to reject undefined symbols with the STO_MIPS_PLT bit clear. the previous hack of treating all mips relocations as JMP_SLOT-like, rather than rejecting the unwanted symbols in find_sym, probably also caused dlsym to wrongly return PLT thunks in place of the correct address of a function under at least some conditions. this should now be fixed, at least for global-scope symbol lookups.
2014-06-30 05:18:14 +00:00
if (need_def || (sym->st_info&0xf) == STT_TLS
|| ARCH_SYM_REJECT_UND(sym))
continue;
if (!sym->st_value)
if ((sym->st_info&0xf) != STT_TLS)
continue;
if (!(1<<(sym->st_info&0xf) & OK_TYPES)) continue;
if (!(1<<(sym->st_info>>4) & OK_BINDS)) continue;
if (def.sym && sym->st_info>>4 == STB_WEAK) continue;
def.sym = sym;
def.dso = dso;
if (sym->st_info>>4 == STB_GLOBAL) break;
}
return def;
}
#define NO_INLINE_ADDEND (1<<REL_COPY | 1<<REL_GOT | 1<<REL_PLT)
ptrdiff_t __tlsdesc_static(), __tlsdesc_dynamic();
static void do_relocs(struct dso *dso, size_t *rel, size_t rel_size, size_t stride)
{
unsigned char *base = dso->base;
Sym *syms = dso->syms;
char *strings = dso->strings;
Sym *sym;
const char *name;
void *ctx;
int astype, type;
int sym_index;
struct symdef def;
size_t *reloc_addr;
size_t sym_val;
size_t tls_val;
size_t addend;
for (; rel_size; rel+=stride, rel_size-=stride*sizeof(size_t)) {
astype = R_TYPE(rel[1]);
if (!astype) continue;
type = remap_rel(astype);
if (!type) {
error("Error relocating %s: unsupported relocation type %d",
dso->name, astype);
continue;
}
sym_index = R_SYM(rel[1]);
reloc_addr = (void *)(base + rel[0]);
if (sym_index) {
sym = syms + sym_index;
name = strings + sym->st_name;
ctx = type==REL_COPY ? head->next : head;
def = find_sym(ctx, name, type==REL_PLT);
if (!def.sym && (sym->st_shndx != SHN_UNDEF
|| sym->st_info>>4 != STB_WEAK)) {
error("Error relocating %s: %s: symbol not found",
dso->name, name);
continue;
}
} else {
sym = 0;
def.sym = 0;
def.dso = dso;
}
addend = stride>2 ? rel[2]
: (1<<type & NO_INLINE_ADDEND) ? 0
: *reloc_addr;
sym_val = def.sym ? (size_t)def.dso->base+def.sym->st_value : 0;
tls_val = def.sym ? def.sym->st_value : 0;
switch(type) {
case REL_OFFSET:
addend -= (size_t)reloc_addr;
case REL_SYMBOLIC:
case REL_GOT:
case REL_PLT:
*reloc_addr = sym_val + addend;
break;
case REL_RELATIVE:
*reloc_addr = (size_t)base + addend;
break;
case REL_SYM_OR_REL:
if (sym) *reloc_addr = sym_val + addend;
else *reloc_addr = (size_t)base + addend;
break;
case REL_COPY:
memcpy(reloc_addr, (void *)sym_val, sym->st_size);
break;
case REL_OFFSET32:
*(uint32_t *)reloc_addr = sym_val + addend
- (size_t)reloc_addr;
break;
case REL_DTPMOD:
*reloc_addr = def.dso->tls_id;
break;
case REL_DTPOFF:
*reloc_addr = tls_val + addend;
break;
#ifdef TLS_ABOVE_TP
case REL_TPOFF:
*reloc_addr = tls_val + def.dso->tls_offset + TPOFF_K + addend;
break;
#else
case REL_TPOFF:
*reloc_addr = tls_val - def.dso->tls_offset + addend;
break;
case REL_TPOFF_NEG:
*reloc_addr = def.dso->tls_offset - tls_val + addend;
break;
#endif
case REL_TLSDESC:
if (stride<3) addend = reloc_addr[1];
if (runtime && def.dso->tls_id >= static_tls_cnt) {
struct td_index *new = malloc(sizeof *new);
if (!new) error(
"Error relocating %s: cannot allocate TLSDESC for %s",
dso->name, sym ? name : "(local)" );
new->next = dso->td_index;
dso->td_index = new;
new->args[0] = def.dso->tls_id;
new->args[1] = tls_val + addend;
reloc_addr[0] = (size_t)__tlsdesc_dynamic;
reloc_addr[1] = (size_t)new;
} else {
reloc_addr[0] = (size_t)__tlsdesc_static;
#ifdef TLS_ABOVE_TP
reloc_addr[1] = tls_val + def.dso->tls_offset
+ TPOFF_K + addend;
#else
reloc_addr[1] = tls_val - def.dso->tls_offset
+ addend;
#endif
}
break;
}
}
}
/* A huge hack: to make up for the wastefulness of shared libraries
* needing at least a page of dirty memory even if they have no global
* data, we reclaim the gaps at the beginning and end of writable maps
* and "donate" them to the heap by setting up minimal malloc
* structures and then freeing them. */
2014-03-25 12:13:27 +00:00
static void reclaim(struct dso *dso, size_t start, size_t end)
{
size_t *a, *z;
2014-03-25 12:13:27 +00:00
if (start >= dso->relro_start && start < dso->relro_end) start = dso->relro_end;
if (end >= dso->relro_start && end < dso->relro_end) end = dso->relro_start;
start = start + 6*sizeof(size_t)-1 & -4*sizeof(size_t);
end = (end & -4*sizeof(size_t)) - 2*sizeof(size_t);
if (start>end || end-start < 4*sizeof(size_t)) return;
2014-03-25 12:13:27 +00:00
a = (size_t *)(dso->base + start);
z = (size_t *)(dso->base + end);
a[-2] = 1;
a[-1] = z[0] = end-start + 2*sizeof(size_t) | 1;
z[1] = 1;
free(a);
}
static void reclaim_gaps(struct dso *dso)
{
Phdr *ph = dso->phdr;
size_t phcnt = dso->phnum;
for (; phcnt--; ph=(void *)((char *)ph+dso->phentsize)) {
if (ph->p_type!=PT_LOAD) continue;
if ((ph->p_flags&(PF_R|PF_W))!=(PF_R|PF_W)) continue;
2014-03-25 12:13:27 +00:00
reclaim(dso, ph->p_vaddr & -PAGE_SIZE, ph->p_vaddr);
reclaim(dso, ph->p_vaddr+ph->p_memsz,
ph->p_vaddr+ph->p_memsz+PAGE_SIZE-1 & -PAGE_SIZE);
}
}
static void *map_library(int fd, struct dso *dso)
{
Ehdr buf[(896+sizeof(Ehdr))/sizeof(Ehdr)];
void *allocated_buf=0;
size_t phsize;
size_t addr_min=SIZE_MAX, addr_max=0, map_len;
size_t this_min, this_max;
off_t off_start;
Ehdr *eh;
Phdr *ph, *ph0;
unsigned prot;
unsigned char *map=MAP_FAILED, *base;
size_t dyn=0;
size_t tls_image=0;
size_t i;
ssize_t l = read(fd, buf, sizeof buf);
eh = buf;
if (l<0) return 0;
if (l<sizeof *eh || (eh->e_type != ET_DYN && eh->e_type != ET_EXEC))
goto noexec;
phsize = eh->e_phentsize * eh->e_phnum;
if (phsize > sizeof buf - sizeof *eh) {
allocated_buf = malloc(phsize);
if (!allocated_buf) return 0;
l = pread(fd, allocated_buf, phsize, eh->e_phoff);
if (l < 0) goto error;
if (l != phsize) goto noexec;
ph = ph0 = allocated_buf;
} else if (eh->e_phoff + phsize > l) {
l = pread(fd, buf+1, phsize, eh->e_phoff);
if (l < 0) goto error;
if (l != phsize) goto noexec;
ph = ph0 = (void *)(buf + 1);
} else {
ph = ph0 = (void *)((char *)buf + eh->e_phoff);
}
for (i=eh->e_phnum; i; i--, ph=(void *)((char *)ph+eh->e_phentsize)) {
if (ph->p_type == PT_DYNAMIC) {
dyn = ph->p_vaddr;
} else if (ph->p_type == PT_TLS) {
tls_image = ph->p_vaddr;
dso->tls_align = ph->p_align;
dso->tls_len = ph->p_filesz;
dso->tls_size = ph->p_memsz;
2014-03-25 12:13:27 +00:00
} else if (ph->p_type == PT_GNU_RELRO) {
dso->relro_start = ph->p_vaddr & -PAGE_SIZE;
dso->relro_end = (ph->p_vaddr + ph->p_memsz) & -PAGE_SIZE;
}
if (ph->p_type != PT_LOAD) continue;
if (ph->p_vaddr < addr_min) {
addr_min = ph->p_vaddr;
off_start = ph->p_offset;
prot = (((ph->p_flags&PF_R) ? PROT_READ : 0) |
((ph->p_flags&PF_W) ? PROT_WRITE: 0) |
((ph->p_flags&PF_X) ? PROT_EXEC : 0));
}
if (ph->p_vaddr+ph->p_memsz > addr_max) {
addr_max = ph->p_vaddr+ph->p_memsz;
}
}
if (!dyn) goto noexec;
addr_max += PAGE_SIZE-1;
addr_max &= -PAGE_SIZE;
addr_min &= -PAGE_SIZE;
off_start &= -PAGE_SIZE;
map_len = addr_max - addr_min + off_start;
/* The first time, we map too much, possibly even more than
* the length of the file. This is okay because we will not
* use the invalid part; we just need to reserve the right
* amount of virtual address space to map over later. */
map = mmap((void *)addr_min, map_len, prot, MAP_PRIVATE, fd, off_start);
if (map==MAP_FAILED) goto error;
/* If the loaded file is not relocatable and the requested address is
* not available, then the load operation must fail. */
if (eh->e_type != ET_DYN && addr_min && map!=(void *)addr_min) {
errno = EBUSY;
goto error;
}
base = map - addr_min;
dso->phdr = 0;
dso->phnum = 0;
for (ph=ph0, i=eh->e_phnum; i; i--, ph=(void *)((char *)ph+eh->e_phentsize)) {
if (ph->p_type != PT_LOAD) continue;
/* Check if the programs headers are in this load segment, and
* if so, record the address for use by dl_iterate_phdr. */
if (!dso->phdr && eh->e_phoff >= ph->p_offset
&& eh->e_phoff+phsize <= ph->p_offset+ph->p_filesz) {
dso->phdr = (void *)(base + ph->p_vaddr
+ (eh->e_phoff-ph->p_offset));
dso->phnum = eh->e_phnum;
dso->phentsize = eh->e_phentsize;
}
/* Reuse the existing mapping for the lowest-address LOAD */
if ((ph->p_vaddr & -PAGE_SIZE) == addr_min) continue;
this_min = ph->p_vaddr & -PAGE_SIZE;
this_max = ph->p_vaddr+ph->p_memsz+PAGE_SIZE-1 & -PAGE_SIZE;
off_start = ph->p_offset & -PAGE_SIZE;
prot = (((ph->p_flags&PF_R) ? PROT_READ : 0) |
((ph->p_flags&PF_W) ? PROT_WRITE: 0) |
((ph->p_flags&PF_X) ? PROT_EXEC : 0));
if (mmap(base+this_min, this_max-this_min, prot, MAP_PRIVATE|MAP_FIXED, fd, off_start) == MAP_FAILED)
goto error;
if (ph->p_memsz > ph->p_filesz) {
size_t brk = (size_t)base+ph->p_vaddr+ph->p_filesz;
size_t pgbrk = brk+PAGE_SIZE-1 & -PAGE_SIZE;
memset((void *)brk, 0, pgbrk-brk & PAGE_SIZE-1);
if (pgbrk-(size_t)base < this_max && mmap((void *)pgbrk, (size_t)base+this_max-pgbrk, prot, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) == MAP_FAILED)
goto error;
}
}
2011-06-29 04:29:08 +00:00
for (i=0; ((size_t *)(base+dyn))[i]; i+=2)
if (((size_t *)(base+dyn))[i]==DT_TEXTREL) {
if (mprotect(map, map_len, PROT_READ|PROT_WRITE|PROT_EXEC) < 0)
goto error;
2011-06-29 04:29:08 +00:00
break;
}
dso->map = map;
dso->map_len = map_len;
dso->base = base;
dso->dynv = (void *)(base+dyn);
if (dso->tls_size) dso->tls_image = (void *)(base+tls_image);
if (!runtime) reclaim_gaps(dso);
free(allocated_buf);
return map;
noexec:
errno = ENOEXEC;
error:
if (map!=MAP_FAILED) munmap(map, map_len);
free(allocated_buf);
return 0;
}
static int path_open(const char *name, const char *s, char *buf, size_t buf_size)
{
size_t l;
int fd;
for (;;) {
s += strspn(s, ":\n");
l = strcspn(s, ":\n");
if (l-1 >= INT_MAX) return -1;
if (snprintf(buf, buf_size, "%.*s/%s", (int)l, s, name) < buf_size) {
if ((fd = open(buf, O_RDONLY|O_CLOEXEC))>=0) return fd;
switch (errno) {
case ENOENT:
case ENOTDIR:
case EACCES:
case ENAMETOOLONG:
break;
default:
/* Any negative value but -1 will inhibit
* futher path search. */
return -2;
}
}
s += l;
}
}
static int fixup_rpath(struct dso *p, char *buf, size_t buf_size)
{
size_t n, l;
const char *s, *t, *origin;
char *d;
if (p->rpath || !p->rpath_orig) return 0;
if (!strchr(p->rpath_orig, '$')) {
p->rpath = p->rpath_orig;
return 0;
}
n = 0;
s = p->rpath_orig;
while ((t=strchr(s, '$'))) {
if (strncmp(t, "$ORIGIN", 7) && strncmp(t, "${ORIGIN}", 9))
return 0;
s = t+1;
n++;
}
if (n > SSIZE_MAX/PATH_MAX) return 0;
if (p->kernel_mapped) {
/* $ORIGIN searches cannot be performed for the main program
* when it is suid/sgid/AT_SECURE. This is because the
* pathname is under the control of the caller of execve.
* For libraries, however, $ORIGIN can be processed safely
* since the library's pathname came from a trusted source
* (either system paths or a call to dlopen). */
if (libc.secure)
return 0;
l = readlink("/proc/self/exe", buf, buf_size);
if (l == -1) switch (errno) {
case ENOENT:
case ENOTDIR:
case EACCES:
break;
default:
return -1;
}
if (l >= buf_size)
return 0;
buf[l] = 0;
origin = buf;
} else {
origin = p->name;
}
t = strrchr(origin, '/');
l = t ? t-origin : 0;
p->rpath = malloc(strlen(p->rpath_orig) + n*l + 1);
if (!p->rpath) return -1;
d = p->rpath;
s = p->rpath_orig;
while ((t=strchr(s, '$'))) {
memcpy(d, s, t-s);
d += t-s;
memcpy(d, origin, l);
d += l;
/* It was determined previously that the '$' is followed
* either by "ORIGIN" or "{ORIGIN}". */
s = t + 7 + 2*(t[1]=='{');
}
strcpy(d, s);
return 0;
}
static void decode_dyn(struct dso *p)
{
size_t dyn[DYN_CNT] = {0};
decode_vec(p->dynv, dyn, DYN_CNT);
p->syms = (void *)(p->base + dyn[DT_SYMTAB]);
p->strings = (void *)(p->base + dyn[DT_STRTAB]);
if (dyn[0]&(1<<DT_HASH))
p->hashtab = (void *)(p->base + dyn[DT_HASH]);
if (dyn[0]&(1<<DT_RPATH))
p->rpath_orig = (void *)(p->strings + dyn[DT_RPATH]);
if (dyn[0]&(1<<DT_RUNPATH))
p->rpath_orig = (void *)(p->strings + dyn[DT_RUNPATH]);
if (search_vec(p->dynv, dyn, DT_GNU_HASH))
p->ghashtab = (void *)(p->base + *dyn);
if (search_vec(p->dynv, dyn, DT_VERSYM))
p->versym = (void *)(p->base + *dyn);
}
static struct dso *load_library(const char *name, struct dso *needed_by)
{
char buf[2*NAME_MAX+2];
const char *pathname;
unsigned char *map;
struct dso *p, temp_dso = {0};
int fd;
struct stat st;
size_t alloc_size;
int n_th = 0;
int is_self = 0;
if (!*name) {
errno = EINVAL;
return 0;
}
/* Catch and block attempts to reload the implementation itself */
if (name[0]=='l' && name[1]=='i' && name[2]=='b') {
static const char *rp, reserved[] =
"c\0pthread\0rt\0m\0dl\0util\0xnet\0";
char *z = strchr(name, '.');
if (z) {
size_t l = z-name;
for (rp=reserved; *rp && strncmp(name+3, rp, l-3); rp+=strlen(rp)+1);
if (*rp) {
if (ldd_mode) {
/* Track which names have been resolved
* and only report each one once. */
static unsigned reported;
unsigned mask = 1U<<(rp-reserved);
if (!(reported & mask)) {
reported |= mask;
dprintf(1, "\t%s => %s (%p)\n",
name, ldso->name,
ldso->base);
}
}
is_self = 1;
}
}
}
if (!strcmp(name, ldso->name)) is_self = 1;
if (is_self) {
if (!ldso->prev) {
tail->next = ldso;
ldso->prev = tail;
tail = ldso->next ? ldso->next : ldso;
}
return ldso;
}
if (strchr(name, '/')) {
pathname = name;
fd = open(name, O_RDONLY|O_CLOEXEC);
} else {
/* Search for the name to see if it's already loaded */
for (p=head->next; p; p=p->next) {
if (p->shortname && !strcmp(p->shortname, name)) {
p->refcnt++;
return p;
}
}
if (strlen(name) > NAME_MAX) return 0;
fd = -1;
if (env_path) fd = path_open(name, env_path, buf, sizeof buf);
for (p=needed_by; fd == -1 && p; p=p->needed_by) {
if (fixup_rpath(p, buf, sizeof buf) < 0)
fd = -2; /* Inhibit further search. */
if (p->rpath)
fd = path_open(name, p->rpath, buf, sizeof buf);
}
if (fd == -1) {
if (!sys_path) {
char *prefix = 0;
size_t prefix_len;
if (ldso->name[0]=='/') {
char *s, *t, *z;
for (s=t=z=ldso->name; *s; s++)
if (*s=='/') z=t, t=s;
prefix_len = z-ldso->name;
if (prefix_len < PATH_MAX)
prefix = ldso->name;
}
if (!prefix) {
prefix = "";
prefix_len = 0;
}
char etc_ldso_path[prefix_len + 1
+ sizeof "/etc/ld-musl-" LDSO_ARCH ".path"];
snprintf(etc_ldso_path, sizeof etc_ldso_path,
"%.*s/etc/ld-musl-" LDSO_ARCH ".path",
(int)prefix_len, prefix);
FILE *f = fopen(etc_ldso_path, "rbe");
if (f) {
if (getdelim(&sys_path, (size_t[1]){0}, 0, f) <= 0) {
free(sys_path);
sys_path = "";
}
fclose(f);
} else if (errno != ENOENT) {
sys_path = "";
}
}
if (!sys_path) sys_path = "/lib:/usr/local/lib:/usr/lib";
fd = path_open(name, sys_path, buf, sizeof buf);
}
pathname = buf;
}
if (fd < 0) return 0;
if (fstat(fd, &st) < 0) {
close(fd);
return 0;
}
for (p=head->next; p; p=p->next) {
if (p->dev == st.st_dev && p->ino == st.st_ino) {
/* If this library was previously loaded with a
* pathname but a search found the same inode,
* setup its shortname so it can be found by name. */
if (!p->shortname && pathname != name)
p->shortname = strrchr(p->name, '/')+1;
close(fd);
p->refcnt++;
return p;
}
}
map = noload ? 0 : map_library(fd, &temp_dso);
close(fd);
if (!map) return 0;
/* Allocate storage for the new DSO. When there is TLS, this
* storage must include a reservation for all pre-existing
* threads to obtain copies of both the new TLS, and an
* extended DTV capable of storing an additional slot for
* the newly-loaded DSO. */
alloc_size = sizeof *p + strlen(pathname) + 1;
if (runtime && temp_dso.tls_image) {
size_t per_th = temp_dso.tls_size + temp_dso.tls_align
+ sizeof(void *) * (tls_cnt+3);
n_th = libc.threads_minus_1 + 1;
if (n_th > SSIZE_MAX / per_th) alloc_size = SIZE_MAX;
else alloc_size += n_th * per_th;
}
p = calloc(1, alloc_size);
if (!p) {
munmap(map, temp_dso.map_len);
return 0;
}
memcpy(p, &temp_dso, sizeof temp_dso);
decode_dyn(p);
p->dev = st.st_dev;
p->ino = st.st_ino;
p->refcnt = 1;
p->needed_by = needed_by;
p->name = p->buf;
strcpy(p->name, pathname);
/* Add a shortname only if name arg was not an explicit pathname. */
if (pathname != name) p->shortname = strrchr(p->name, '/')+1;
if (p->tls_image) {
always initialize thread pointer at program start this is the first step in an overhaul aimed at greatly simplifying and optimizing everything dealing with thread-local state. previously, the thread pointer was initialized lazily on first access, or at program startup if stack protector was in use, or at certain random places where inconsistent state could be reached if it were not initialized early. while believed to be fully correct, the logic was fragile and non-obvious. in the first phase of the thread pointer overhaul, support is retained (and in some cases improved) for systems/situation where loading the thread pointer fails, e.g. old kernels. some notes on specific changes: - the confusing use of libc.main_thread as an indicator that the thread pointer is initialized is eliminated in favor of an explicit has_thread_pointer predicate. - sigaction no longer needs to ensure that the thread pointer is initialized before installing a signal handler (this was needed to prevent a situation where the signal handler caused the thread pointer to be initialized and the subsequent sigreturn cleared it again) but it still needs to ensure that implementation-internal thread-related signals are not blocked. - pthread tsd initialization for the main thread is deferred in a new manner to minimize bloat in the static-linked __init_tp code. - pthread_setcancelstate no longer needs special handling for the situation before the thread pointer is initialized. it simply fails on systems that cannot support a thread pointer, which are non-conforming anyway. - pthread_cleanup_push/pop now check for missing thread pointer and nop themselves out in this case, so stdio no longer needs to avoid the cancellable path when the thread pointer is not available. a number of cases remain where certain interfaces may crash if the system does not support a thread pointer. at this point, these should be limited to pthread interfaces, and the number of such cases should be fewer than before.
2014-03-24 20:57:11 +00:00
if (runtime && !libc.has_thread_pointer) {
munmap(map, p->map_len);
free(p);
always initialize thread pointer at program start this is the first step in an overhaul aimed at greatly simplifying and optimizing everything dealing with thread-local state. previously, the thread pointer was initialized lazily on first access, or at program startup if stack protector was in use, or at certain random places where inconsistent state could be reached if it were not initialized early. while believed to be fully correct, the logic was fragile and non-obvious. in the first phase of the thread pointer overhaul, support is retained (and in some cases improved) for systems/situation where loading the thread pointer fails, e.g. old kernels. some notes on specific changes: - the confusing use of libc.main_thread as an indicator that the thread pointer is initialized is eliminated in favor of an explicit has_thread_pointer predicate. - sigaction no longer needs to ensure that the thread pointer is initialized before installing a signal handler (this was needed to prevent a situation where the signal handler caused the thread pointer to be initialized and the subsequent sigreturn cleared it again) but it still needs to ensure that implementation-internal thread-related signals are not blocked. - pthread tsd initialization for the main thread is deferred in a new manner to minimize bloat in the static-linked __init_tp code. - pthread_setcancelstate no longer needs special handling for the situation before the thread pointer is initialized. it simply fails on systems that cannot support a thread pointer, which are non-conforming anyway. - pthread_cleanup_push/pop now check for missing thread pointer and nop themselves out in this case, so stdio no longer needs to avoid the cancellable path when the thread pointer is not available. a number of cases remain where certain interfaces may crash if the system does not support a thread pointer. at this point, these should be limited to pthread interfaces, and the number of such cases should be fewer than before.
2014-03-24 20:57:11 +00:00
errno = ENOSYS;
return 0;
}
p->tls_id = ++tls_cnt;
tls_align = MAXP2(tls_align, p->tls_align);
#ifdef TLS_ABOVE_TP
p->tls_offset = tls_offset + ( (tls_align-1) &
-(tls_offset + (uintptr_t)p->tls_image) );
tls_offset += p->tls_size;
#else
tls_offset += p->tls_size + p->tls_align - 1;
tls_offset -= (tls_offset + (uintptr_t)p->tls_image)
& (p->tls_align-1);
p->tls_offset = tls_offset;
#endif
p->new_dtv = (void *)(-sizeof(size_t) &
(uintptr_t)(p->name+strlen(p->name)+sizeof(size_t)));
p->new_tls = (void *)(p->new_dtv + n_th*(tls_cnt+1));
}
tail->next = p;
p->prev = tail;
tail = p;
if (ldd_mode) dprintf(1, "\t%s => %s (%p)\n", name, pathname, p->base);
return p;
}
static void load_deps(struct dso *p)
{
size_t i, ndeps=0;
struct dso ***deps = &p->deps, **tmp, *dep;
for (; p; p=p->next) {
for (i=0; p->dynv[i]; i+=2) {
if (p->dynv[i] != DT_NEEDED) continue;
dep = load_library(p->strings + p->dynv[i+1], p);
if (!dep) {
error("Error loading shared library %s: %m (needed by %s)",
p->strings + p->dynv[i+1], p->name);
continue;
}
if (runtime) {
tmp = realloc(*deps, sizeof(*tmp)*(ndeps+2));
if (!tmp) longjmp(*rtld_fail, 1);
tmp[ndeps++] = dep;
tmp[ndeps] = 0;
*deps = tmp;
}
}
}
}
2011-08-16 04:24:36 +00:00
static void load_preload(char *s)
{
int tmp;
char *z;
for (z=s; *z; s=z) {
for ( ; *s && (isspace(*s) || *s==':'); s++);
for (z=s; *z && !isspace(*z) && *z!=':'; z++);
2011-08-16 04:24:36 +00:00
tmp = *z;
*z = 0;
load_library(s, 0);
2011-08-16 04:24:36 +00:00
*z = tmp;
}
}
static void make_global(struct dso *p)
{
for (; p; p=p->next) p->global = 1;
}
static void reloc_all(struct dso *p)
{
size_t dyn[DYN_CNT] = {0};
for (; p; p=p->next) {
if (p->relocated) continue;
decode_vec(p->dynv, dyn, DYN_CNT);
#ifdef NEED_ARCH_RELOCS
do_arch_relocs(p, head);
#endif
do_relocs(p, (void *)(p->base+dyn[DT_JMPREL]), dyn[DT_PLTRELSZ],
2+(dyn[DT_PLTREL]==DT_RELA));
do_relocs(p, (void *)(p->base+dyn[DT_REL]), dyn[DT_RELSZ], 2);
do_relocs(p, (void *)(p->base+dyn[DT_RELA]), dyn[DT_RELASZ], 3);
2014-03-25 12:13:27 +00:00
if (p->relro_start != p->relro_end &&
mprotect(p->base+p->relro_start, p->relro_end-p->relro_start, PROT_READ) < 0) {
error("Error relocating %s: RELRO protection failed: %m",
2014-03-25 12:13:27 +00:00
p->name);
}
p->relocated = 1;
}
}
static void kernel_mapped_dso(struct dso *p)
{
size_t min_addr = -1, max_addr = 0, cnt;
Phdr *ph = p->phdr;
for (cnt = p->phnum; cnt--; ph = (void *)((char *)ph + p->phentsize)) {
if (ph->p_type == PT_DYNAMIC) {
p->dynv = (void *)(p->base + ph->p_vaddr);
} else if (ph->p_type == PT_GNU_RELRO) {
2014-03-25 12:13:27 +00:00
p->relro_start = ph->p_vaddr & -PAGE_SIZE;
p->relro_end = (ph->p_vaddr + ph->p_memsz) & -PAGE_SIZE;
}
if (ph->p_type != PT_LOAD) continue;
if (ph->p_vaddr < min_addr)
min_addr = ph->p_vaddr;
if (ph->p_vaddr+ph->p_memsz > max_addr)
max_addr = ph->p_vaddr+ph->p_memsz;
}
min_addr &= -PAGE_SIZE;
max_addr = (max_addr + PAGE_SIZE-1) & -PAGE_SIZE;
p->map = p->base + min_addr;
p->map_len = max_addr - min_addr;
p->kernel_mapped = 1;
}
static void do_fini()
{
struct dso *p;
size_t dyn[DYN_CNT] = {0};
for (p=fini_head; p; p=p->fini_next) {
if (!p->constructed) continue;
decode_vec(p->dynv, dyn, DYN_CNT);
if (dyn[0] & (1<<DT_FINI_ARRAY)) {
size_t n = dyn[DT_FINI_ARRAYSZ]/sizeof(size_t);
size_t *fn = (size_t *)(p->base + dyn[DT_FINI_ARRAY])+n;
while (n--) ((void (*)(void))*--fn)();
}
#ifndef NO_LEGACY_INITFINI
if ((dyn[0] & (1<<DT_FINI)) && dyn[DT_FINI])
((void (*)(void))(p->base + dyn[DT_FINI]))();
#endif
}
}
static void do_init_fini(struct dso *p)
{
size_t dyn[DYN_CNT] = {0};
int need_locking = libc.threads_minus_1;
/* Allow recursive calls that arise when a library calls
* dlopen from one of its constructors, but block any
* other threads until all ctors have finished. */
if (need_locking) pthread_mutex_lock(&init_fini_lock);
for (; p; p=p->prev) {
if (p->constructed) continue;
p->constructed = 1;
decode_vec(p->dynv, dyn, DYN_CNT);
if (dyn[0] & ((1<<DT_FINI) | (1<<DT_FINI_ARRAY))) {
p->fini_next = fini_head;
fini_head = p;
}
#ifndef NO_LEGACY_INITFINI
if ((dyn[0] & (1<<DT_INIT)) && dyn[DT_INIT])
((void (*)(void))(p->base + dyn[DT_INIT]))();
#endif
if (dyn[0] & (1<<DT_INIT_ARRAY)) {
size_t n = dyn[DT_INIT_ARRAYSZ]/sizeof(size_t);
size_t *fn = (void *)(p->base + dyn[DT_INIT_ARRAY]);
while (n--) ((void (*)(void))*fn++)();
}
if (!need_locking && libc.threads_minus_1) {
need_locking = 1;
pthread_mutex_lock(&init_fini_lock);
}
}
if (need_locking) pthread_mutex_unlock(&init_fini_lock);
}
void _dl_debug_state(void)
{
}
void __reset_tls()
{
pthread_t self = __pthread_self();
struct dso *p;
for (p=head; p; p=p->next) {
if (!p->tls_id || !self->dtv[p->tls_id]) continue;
memcpy(self->dtv[p->tls_id], p->tls_image, p->tls_len);
memset((char *)self->dtv[p->tls_id]+p->tls_len, 0,
p->tls_size - p->tls_len);
if (p->tls_id == (size_t)self->dtv[0]) break;
}
}
void *__copy_tls(unsigned char *mem)
{
pthread_t td;
struct dso *p;
void **dtv = (void *)mem;
dtv[0] = (void *)tls_cnt;
always initialize thread pointer at program start this is the first step in an overhaul aimed at greatly simplifying and optimizing everything dealing with thread-local state. previously, the thread pointer was initialized lazily on first access, or at program startup if stack protector was in use, or at certain random places where inconsistent state could be reached if it were not initialized early. while believed to be fully correct, the logic was fragile and non-obvious. in the first phase of the thread pointer overhaul, support is retained (and in some cases improved) for systems/situation where loading the thread pointer fails, e.g. old kernels. some notes on specific changes: - the confusing use of libc.main_thread as an indicator that the thread pointer is initialized is eliminated in favor of an explicit has_thread_pointer predicate. - sigaction no longer needs to ensure that the thread pointer is initialized before installing a signal handler (this was needed to prevent a situation where the signal handler caused the thread pointer to be initialized and the subsequent sigreturn cleared it again) but it still needs to ensure that implementation-internal thread-related signals are not blocked. - pthread tsd initialization for the main thread is deferred in a new manner to minimize bloat in the static-linked __init_tp code. - pthread_setcancelstate no longer needs special handling for the situation before the thread pointer is initialized. it simply fails on systems that cannot support a thread pointer, which are non-conforming anyway. - pthread_cleanup_push/pop now check for missing thread pointer and nop themselves out in this case, so stdio no longer needs to avoid the cancellable path when the thread pointer is not available. a number of cases remain where certain interfaces may crash if the system does not support a thread pointer. at this point, these should be limited to pthread interfaces, and the number of such cases should be fewer than before.
2014-03-24 20:57:11 +00:00
if (!tls_cnt) {
td = (void *)(dtv+1);
td->dtv = td->dtv_copy = dtv;
always initialize thread pointer at program start this is the first step in an overhaul aimed at greatly simplifying and optimizing everything dealing with thread-local state. previously, the thread pointer was initialized lazily on first access, or at program startup if stack protector was in use, or at certain random places where inconsistent state could be reached if it were not initialized early. while believed to be fully correct, the logic was fragile and non-obvious. in the first phase of the thread pointer overhaul, support is retained (and in some cases improved) for systems/situation where loading the thread pointer fails, e.g. old kernels. some notes on specific changes: - the confusing use of libc.main_thread as an indicator that the thread pointer is initialized is eliminated in favor of an explicit has_thread_pointer predicate. - sigaction no longer needs to ensure that the thread pointer is initialized before installing a signal handler (this was needed to prevent a situation where the signal handler caused the thread pointer to be initialized and the subsequent sigreturn cleared it again) but it still needs to ensure that implementation-internal thread-related signals are not blocked. - pthread tsd initialization for the main thread is deferred in a new manner to minimize bloat in the static-linked __init_tp code. - pthread_setcancelstate no longer needs special handling for the situation before the thread pointer is initialized. it simply fails on systems that cannot support a thread pointer, which are non-conforming anyway. - pthread_cleanup_push/pop now check for missing thread pointer and nop themselves out in this case, so stdio no longer needs to avoid the cancellable path when the thread pointer is not available. a number of cases remain where certain interfaces may crash if the system does not support a thread pointer. at this point, these should be limited to pthread interfaces, and the number of such cases should be fewer than before.
2014-03-24 20:57:11 +00:00
return td;
}
#ifdef TLS_ABOVE_TP
mem += sizeof(void *) * (tls_cnt+1);
mem += -((uintptr_t)mem + sizeof(struct pthread)) & (tls_align-1);
td = (pthread_t)mem;
mem += sizeof(struct pthread);
for (p=head; p; p=p->next) {
if (!p->tls_id) continue;
dtv[p->tls_id] = mem + p->tls_offset;
memcpy(dtv[p->tls_id], p->tls_image, p->tls_len);
}
#else
mem += libc.tls_size - sizeof(struct pthread);
mem -= (uintptr_t)mem & (tls_align-1);
td = (pthread_t)mem;
for (p=head; p; p=p->next) {
if (!p->tls_id) continue;
dtv[p->tls_id] = mem - p->tls_offset;
memcpy(dtv[p->tls_id], p->tls_image, p->tls_len);
}
#endif
td->dtv = td->dtv_copy = dtv;
return td;
}
void *__tls_get_new(size_t *v)
{
pthread_t self = __pthread_self();
/* Block signals to make accessing new TLS async-signal-safe */
sigset_t set;
__block_all_sigs(&set);
if (v[0]<=(size_t)self->dtv[0]) {
__restore_sigs(&set);
return (char *)self->dtv[v[0]]+v[1];
}
/* This is safe without any locks held because, if the caller
* is able to request the Nth entry of the DTV, the DSO list
* must be valid at least that far out and it was synchronized
* at program startup or by an already-completed call to dlopen. */
struct dso *p;
for (p=head; p->tls_id != v[0]; p=p->next);
/* Get new DTV space from new DSO if needed */
if (v[0] > (size_t)self->dtv[0]) {
void **newdtv = p->new_dtv +
(v[0]+1)*sizeof(void *)*a_fetch_add(&p->new_dtv_idx,1);
memcpy(newdtv, self->dtv,
((size_t)self->dtv[0]+1) * sizeof(void *));
newdtv[0] = (void *)v[0];
self->dtv = self->dtv_copy = newdtv;
}
/* Get new TLS memory from all new DSOs up to the requested one */
unsigned char *mem;
for (p=head; ; p=p->next) {
if (!p->tls_id || self->dtv[p->tls_id]) continue;
mem = p->new_tls + (p->tls_size + p->tls_align)
* a_fetch_add(&p->new_tls_idx,1);
mem += ((uintptr_t)p->tls_image - (uintptr_t)mem)
& (p->tls_align-1);
self->dtv[p->tls_id] = mem;
memcpy(mem, p->tls_image, p->tls_len);
if (p->tls_id == v[0]) break;
}
__restore_sigs(&set);
return mem + v[1];
}
static void update_tls_size()
{
libc.tls_size = ALIGN(
(1+tls_cnt) * sizeof(void *) +
tls_offset +
sizeof(struct pthread) +
tls_align * 2,
tls_align);
}
void *__dynlink(int argc, char **argv)
{
size_t aux[AUX_CNT] = {0};
size_t i;
Phdr *phdr;
Ehdr *ehdr;
static struct dso builtin_dsos[3];
struct dso *const app = builtin_dsos+0;
struct dso *const lib = builtin_dsos+1;
struct dso *const vdso = builtin_dsos+2;
2011-08-16 04:24:36 +00:00
char *env_preload=0;
2012-08-25 21:31:59 +00:00
size_t vdso_base;
size_t *auxv;
add support for init/fini array in main program, and greatly simplify modern (4.7.x and later) gcc uses init/fini arrays, rather than the legacy _init/_fini function pasting and crtbegin/crtend ctors/dtors system, on most or all archs. some archs had already switched a long time ago. without following this change, global ctors/dtors will cease to work under musl when building with new gcc versions. the most surprising part of this patch is that it actually reduces the size of the init code, for both static and shared libc. this is achieved by (1) unifying the handling main program and shared libraries in the dynamic linker, and (2) eliminating the glibc-inspired rube goldberg machine for passing around init and fini function pointers. to clarify, some background: the function signature for __libc_start_main was based on glibc, as part of the original goal of being able to run some glibc-linked binaries. it worked by having the crt1 code, which is linked into every application, static or dynamic, obtain and pass pointers to the init and fini functions, which __libc_start_main is then responsible for using and recording for later use, as necessary. however, in neither the static-linked nor dynamic-linked case do we actually need crt1.o's help. with dynamic linking, all the pointers are available in the _DYNAMIC block. with static linking, it's safe to simply access the _init/_fini and __init_array_start, etc. symbols directly. obviously changing the __libc_start_main function signature in an incompatible way would break both old musl-linked programs and glibc-linked programs, so let's not do that. instead, the function can just ignore the information it doesn't need. new archs need not even provide the useless args in their versions of crt1.o. existing archs should continue to provide it as long as there is an interest in having newly-linked applications be able to run on old versions of musl; at some point in the future, this support can be removed.
2013-07-21 07:00:54 +00:00
char **envp = argv+argc+1;
always initialize thread pointer at program start this is the first step in an overhaul aimed at greatly simplifying and optimizing everything dealing with thread-local state. previously, the thread pointer was initialized lazily on first access, or at program startup if stack protector was in use, or at certain random places where inconsistent state could be reached if it were not initialized early. while believed to be fully correct, the logic was fragile and non-obvious. in the first phase of the thread pointer overhaul, support is retained (and in some cases improved) for systems/situation where loading the thread pointer fails, e.g. old kernels. some notes on specific changes: - the confusing use of libc.main_thread as an indicator that the thread pointer is initialized is eliminated in favor of an explicit has_thread_pointer predicate. - sigaction no longer needs to ensure that the thread pointer is initialized before installing a signal handler (this was needed to prevent a situation where the signal handler caused the thread pointer to be initialized and the subsequent sigreturn cleared it again) but it still needs to ensure that implementation-internal thread-related signals are not blocked. - pthread tsd initialization for the main thread is deferred in a new manner to minimize bloat in the static-linked __init_tp code. - pthread_setcancelstate no longer needs special handling for the situation before the thread pointer is initialized. it simply fails on systems that cannot support a thread pointer, which are non-conforming anyway. - pthread_cleanup_push/pop now check for missing thread pointer and nop themselves out in this case, so stdio no longer needs to avoid the cancellable path when the thread pointer is not available. a number of cases remain where certain interfaces may crash if the system does not support a thread pointer. at this point, these should be limited to pthread interfaces, and the number of such cases should be fewer than before.
2014-03-24 20:57:11 +00:00
void *initial_tls;
/* Find aux vector just past environ[] */
for (i=argc+1; argv[i]; i++)
if (!memcmp(argv[i], "LD_LIBRARY_PATH=", 16))
env_path = argv[i]+16;
2011-08-16 04:24:36 +00:00
else if (!memcmp(argv[i], "LD_PRELOAD=", 11))
env_preload = argv[i]+11;
auxv = (void *)(argv+i+1);
decode_vec(auxv, aux, AUX_CNT);
/* Only trust user/env if kernel says we're not suid/sgid */
if ((aux[0]&0x7800)!=0x7800 || aux[AT_UID]!=aux[AT_EUID]
2011-08-16 11:46:42 +00:00
|| aux[AT_GID]!=aux[AT_EGID] || aux[AT_SECURE]) {
env_path = 0;
2011-08-16 04:24:36 +00:00
env_preload = 0;
libc.secure = 1;
}
libc.page_size = aux[AT_PAGESZ];
libc.auxv = auxv;
/* If the dynamic linker was invoked as a program itself, AT_BASE
* will not be set. In that case, we assume the base address is
* the start of the page containing the PHDRs; I don't know any
* better approach... */
if (!aux[AT_BASE]) {
aux[AT_BASE] = aux[AT_PHDR] & -PAGE_SIZE;
aux[AT_PHDR] = aux[AT_PHENT] = aux[AT_PHNUM] = 0;
}
/* The dynamic linker load address is passed by the kernel
* in the AUX vector, so this is easy. */
lib->base = (void *)aux[AT_BASE];
lib->name = lib->shortname = "libc.so";
lib->global = 1;
ehdr = (void *)lib->base;
lib->phnum = ehdr->e_phnum;
lib->phdr = (void *)(aux[AT_BASE]+ehdr->e_phoff);
lib->phentsize = ehdr->e_phentsize;
kernel_mapped_dso(lib);
decode_dyn(lib);
if (aux[AT_PHDR]) {
size_t interp_off = 0;
size_t tls_image = 0;
/* Find load address of the main program, via AT_PHDR vs PT_PHDR. */
app->phdr = phdr = (void *)aux[AT_PHDR];
app->phnum = aux[AT_PHNUM];
app->phentsize = aux[AT_PHENT];
for (i=aux[AT_PHNUM]; i; i--, phdr=(void *)((char *)phdr + aux[AT_PHENT])) {
if (phdr->p_type == PT_PHDR)
app->base = (void *)(aux[AT_PHDR] - phdr->p_vaddr);
else if (phdr->p_type == PT_INTERP)
interp_off = (size_t)phdr->p_vaddr;
else if (phdr->p_type == PT_TLS) {
tls_image = phdr->p_vaddr;
app->tls_len = phdr->p_filesz;
app->tls_size = phdr->p_memsz;
app->tls_align = phdr->p_align;
}
}
if (app->tls_size) app->tls_image = (char *)app->base + tls_image;
if (interp_off) lib->name = (char *)app->base + interp_off;
if ((aux[0] & (1UL<<AT_EXECFN))
&& strncmp((char *)aux[AT_EXECFN], "/proc/", 6))
app->name = (char *)aux[AT_EXECFN];
else
app->name = argv[0];
kernel_mapped_dso(app);
} else {
int fd;
char *ldname = argv[0];
size_t l = strlen(ldname);
if (l >= 3 && !strcmp(ldname+l-3, "ldd")) ldd_mode = 1;
*argv++ = (void *)-1;
while (argv[0] && argv[0][0]=='-' && argv[0][1]=='-') {
char *opt = argv[0]+2;
*argv++ = (void *)-1;
if (!*opt) {
break;
} else if (!memcmp(opt, "list", 5)) {
ldd_mode = 1;
} else if (!memcmp(opt, "library-path", 12)) {
if (opt[12]=='=') env_path = opt+13;
else if (opt[12]) *argv = 0;
else if (*argv) env_path = *argv++;
} else if (!memcmp(opt, "preload", 7)) {
if (opt[7]=='=') env_preload = opt+8;
else if (opt[7]) *argv = 0;
else if (*argv) env_preload = *argv++;
} else {
argv[0] = 0;
}
argv[-1] = (void *)-1;
}
if (!argv[0]) {
dprintf(2, "musl libc\n"
"Version %s\n"
"Dynamic Program Loader\n"
"Usage: %s [options] [--] pathname%s\n",
__libc_get_version(), ldname,
ldd_mode ? "" : " [args]");
_exit(1);
}
fd = open(argv[0], O_RDONLY);
if (fd < 0) {
dprintf(2, "%s: cannot load %s: %s\n", ldname, argv[0], strerror(errno));
_exit(1);
}
runtime = 1;
ehdr = (void *)map_library(fd, app);
if (!ehdr) {
dprintf(2, "%s: %s: Not a valid dynamic program\n", ldname, argv[0]);
_exit(1);
}
runtime = 0;
close(fd);
lib->name = ldname;
app->name = argv[0];
aux[AT_ENTRY] = (size_t)app->base + ehdr->e_entry;
/* Find the name that would have been used for the dynamic
* linker had ldd not taken its place. */
if (ldd_mode) {
for (i=0; i<app->phnum; i++) {
if (app->phdr[i].p_type == PT_INTERP)
lib->name = (void *)(app->base
+ app->phdr[i].p_vaddr);
}
dprintf(1, "\t%s (%p)\n", lib->name, lib->base);
}
}
if (app->tls_size) {
app->tls_id = tls_cnt = 1;
#ifdef TLS_ABOVE_TP
app->tls_offset = 0;
tls_offset = app->tls_size
+ ( -((uintptr_t)app->tls_image + app->tls_size)
& (app->tls_align-1) );
#else
tls_offset = app->tls_offset = app->tls_size
+ ( -((uintptr_t)app->tls_image + app->tls_size)
& (app->tls_align-1) );
#endif
tls_align = MAXP2(tls_align, app->tls_align);
}
app->global = 1;
decode_dyn(app);
/* Attach to vdso, if provided by the kernel */
2012-08-25 21:31:59 +00:00
if (search_vec(auxv, &vdso_base, AT_SYSINFO_EHDR)) {
ehdr = (void *)vdso_base;
vdso->phdr = phdr = (void *)(vdso_base + ehdr->e_phoff);
vdso->phnum = ehdr->e_phnum;
vdso->phentsize = ehdr->e_phentsize;
for (i=ehdr->e_phnum; i; i--, phdr=(void *)((char *)phdr + ehdr->e_phentsize)) {
if (phdr->p_type == PT_DYNAMIC)
vdso->dynv = (void *)(vdso_base + phdr->p_offset);
if (phdr->p_type == PT_LOAD)
vdso->base = (void *)(vdso_base - phdr->p_vaddr + phdr->p_offset);
}
vdso->name = "";
vdso->shortname = "linux-gate.so.1";
vdso->global = 1;
decode_dyn(vdso);
vdso->prev = lib;
lib->next = vdso;
}
/* Initial dso chain consists only of the app. We temporarily
* append the dynamic linker/libc so we can relocate it, then
* restore the initial chain in preparation for loading third
* party libraries (preload/needed). */
head = tail = app;
ldso = lib;
app->next = lib;
reloc_all(lib);
app->next = 0;
/* PAST THIS POINT, ALL LIBC INTERFACES ARE FULLY USABLE. */
/* Donate unused parts of app and library mapping to malloc */
reclaim_gaps(app);
reclaim_gaps(lib);
/* Load preload/needed libraries, add their symbols to the global
* namespace, and perform all remaining relocations. The main
* program must be relocated LAST since it may contain copy
* relocations which depend on libraries' relocations. */
2011-08-16 04:24:36 +00:00
if (env_preload) load_preload(env_preload);
load_deps(app);
make_global(app);
2014-03-25 12:13:27 +00:00
#ifndef DYNAMIC_IS_RO
for (i=0; app->dynv[i]; i+=2)
if (app->dynv[i]==DT_DEBUG)
app->dynv[i+1] = (size_t)&debug;
#endif
reloc_all(app->next);
reloc_all(app);
update_tls_size();
always initialize thread pointer at program start this is the first step in an overhaul aimed at greatly simplifying and optimizing everything dealing with thread-local state. previously, the thread pointer was initialized lazily on first access, or at program startup if stack protector was in use, or at certain random places where inconsistent state could be reached if it were not initialized early. while believed to be fully correct, the logic was fragile and non-obvious. in the first phase of the thread pointer overhaul, support is retained (and in some cases improved) for systems/situation where loading the thread pointer fails, e.g. old kernels. some notes on specific changes: - the confusing use of libc.main_thread as an indicator that the thread pointer is initialized is eliminated in favor of an explicit has_thread_pointer predicate. - sigaction no longer needs to ensure that the thread pointer is initialized before installing a signal handler (this was needed to prevent a situation where the signal handler caused the thread pointer to be initialized and the subsequent sigreturn cleared it again) but it still needs to ensure that implementation-internal thread-related signals are not blocked. - pthread tsd initialization for the main thread is deferred in a new manner to minimize bloat in the static-linked __init_tp code. - pthread_setcancelstate no longer needs special handling for the situation before the thread pointer is initialized. it simply fails on systems that cannot support a thread pointer, which are non-conforming anyway. - pthread_cleanup_push/pop now check for missing thread pointer and nop themselves out in this case, so stdio no longer needs to avoid the cancellable path when the thread pointer is not available. a number of cases remain where certain interfaces may crash if the system does not support a thread pointer. at this point, these should be limited to pthread interfaces, and the number of such cases should be fewer than before.
2014-03-24 20:57:11 +00:00
if (libc.tls_size > sizeof builtin_tls) {
initial_tls = calloc(libc.tls_size, 1);
if (!initial_tls) {
dprintf(2, "%s: Error getting %zu bytes thread-local storage: %m\n",
argv[0], libc.tls_size);
_exit(127);
}
always initialize thread pointer at program start this is the first step in an overhaul aimed at greatly simplifying and optimizing everything dealing with thread-local state. previously, the thread pointer was initialized lazily on first access, or at program startup if stack protector was in use, or at certain random places where inconsistent state could be reached if it were not initialized early. while believed to be fully correct, the logic was fragile and non-obvious. in the first phase of the thread pointer overhaul, support is retained (and in some cases improved) for systems/situation where loading the thread pointer fails, e.g. old kernels. some notes on specific changes: - the confusing use of libc.main_thread as an indicator that the thread pointer is initialized is eliminated in favor of an explicit has_thread_pointer predicate. - sigaction no longer needs to ensure that the thread pointer is initialized before installing a signal handler (this was needed to prevent a situation where the signal handler caused the thread pointer to be initialized and the subsequent sigreturn cleared it again) but it still needs to ensure that implementation-internal thread-related signals are not blocked. - pthread tsd initialization for the main thread is deferred in a new manner to minimize bloat in the static-linked __init_tp code. - pthread_setcancelstate no longer needs special handling for the situation before the thread pointer is initialized. it simply fails on systems that cannot support a thread pointer, which are non-conforming anyway. - pthread_cleanup_push/pop now check for missing thread pointer and nop themselves out in this case, so stdio no longer needs to avoid the cancellable path when the thread pointer is not available. a number of cases remain where certain interfaces may crash if the system does not support a thread pointer. at this point, these should be limited to pthread interfaces, and the number of such cases should be fewer than before.
2014-03-24 20:57:11 +00:00
} else {
initial_tls = builtin_tls;
}
if (__init_tp(__copy_tls(initial_tls)) < 0 && tls_cnt) {
dprintf(2, "%s: Thread-local storage not supported by kernel.\n", argv[0]);
_exit(127);
}
static_tls_cnt = tls_cnt;
if (ldso_fail) _exit(127);
if (ldd_mode) _exit(0);
/* Switch to runtime mode: any further failures in the dynamic
* linker are a reportable failure rather than a fatal startup
* error. If the dynamic loader (dlopen) will not be used, free
* all memory used by the dynamic linker. */
runtime = 1;
debug.ver = 1;
debug.bp = _dl_debug_state;
debug.head = head;
debug.base = lib->base;
debug.state = 0;
_dl_debug_state();
add support for init/fini array in main program, and greatly simplify modern (4.7.x and later) gcc uses init/fini arrays, rather than the legacy _init/_fini function pasting and crtbegin/crtend ctors/dtors system, on most or all archs. some archs had already switched a long time ago. without following this change, global ctors/dtors will cease to work under musl when building with new gcc versions. the most surprising part of this patch is that it actually reduces the size of the init code, for both static and shared libc. this is achieved by (1) unifying the handling main program and shared libraries in the dynamic linker, and (2) eliminating the glibc-inspired rube goldberg machine for passing around init and fini function pointers. to clarify, some background: the function signature for __libc_start_main was based on glibc, as part of the original goal of being able to run some glibc-linked binaries. it worked by having the crt1 code, which is linked into every application, static or dynamic, obtain and pass pointers to the init and fini functions, which __libc_start_main is then responsible for using and recording for later use, as necessary. however, in neither the static-linked nor dynamic-linked case do we actually need crt1.o's help. with dynamic linking, all the pointers are available in the _DYNAMIC block. with static linking, it's safe to simply access the _init/_fini and __init_array_start, etc. symbols directly. obviously changing the __libc_start_main function signature in an incompatible way would break both old musl-linked programs and glibc-linked programs, so let's not do that. instead, the function can just ignore the information it doesn't need. new archs need not even provide the useless args in their versions of crt1.o. existing archs should continue to provide it as long as there is an interest in having newly-linked applications be able to run on old versions of musl; at some point in the future, this support can be removed.
2013-07-21 07:00:54 +00:00
__init_libc(envp, argv[0]);
atexit(do_fini);
add support for init/fini array in main program, and greatly simplify modern (4.7.x and later) gcc uses init/fini arrays, rather than the legacy _init/_fini function pasting and crtbegin/crtend ctors/dtors system, on most or all archs. some archs had already switched a long time ago. without following this change, global ctors/dtors will cease to work under musl when building with new gcc versions. the most surprising part of this patch is that it actually reduces the size of the init code, for both static and shared libc. this is achieved by (1) unifying the handling main program and shared libraries in the dynamic linker, and (2) eliminating the glibc-inspired rube goldberg machine for passing around init and fini function pointers. to clarify, some background: the function signature for __libc_start_main was based on glibc, as part of the original goal of being able to run some glibc-linked binaries. it worked by having the crt1 code, which is linked into every application, static or dynamic, obtain and pass pointers to the init and fini functions, which __libc_start_main is then responsible for using and recording for later use, as necessary. however, in neither the static-linked nor dynamic-linked case do we actually need crt1.o's help. with dynamic linking, all the pointers are available in the _DYNAMIC block. with static linking, it's safe to simply access the _init/_fini and __init_array_start, etc. symbols directly. obviously changing the __libc_start_main function signature in an incompatible way would break both old musl-linked programs and glibc-linked programs, so let's not do that. instead, the function can just ignore the information it doesn't need. new archs need not even provide the useless args in their versions of crt1.o. existing archs should continue to provide it as long as there is an interest in having newly-linked applications be able to run on old versions of musl; at some point in the future, this support can be removed.
2013-07-21 07:00:54 +00:00
errno = 0;
do_init_fini(tail);
add support for init/fini array in main program, and greatly simplify modern (4.7.x and later) gcc uses init/fini arrays, rather than the legacy _init/_fini function pasting and crtbegin/crtend ctors/dtors system, on most or all archs. some archs had already switched a long time ago. without following this change, global ctors/dtors will cease to work under musl when building with new gcc versions. the most surprising part of this patch is that it actually reduces the size of the init code, for both static and shared libc. this is achieved by (1) unifying the handling main program and shared libraries in the dynamic linker, and (2) eliminating the glibc-inspired rube goldberg machine for passing around init and fini function pointers. to clarify, some background: the function signature for __libc_start_main was based on glibc, as part of the original goal of being able to run some glibc-linked binaries. it worked by having the crt1 code, which is linked into every application, static or dynamic, obtain and pass pointers to the init and fini functions, which __libc_start_main is then responsible for using and recording for later use, as necessary. however, in neither the static-linked nor dynamic-linked case do we actually need crt1.o's help. with dynamic linking, all the pointers are available in the _DYNAMIC block. with static linking, it's safe to simply access the _init/_fini and __init_array_start, etc. symbols directly. obviously changing the __libc_start_main function signature in an incompatible way would break both old musl-linked programs and glibc-linked programs, so let's not do that. instead, the function can just ignore the information it doesn't need. new archs need not even provide the useless args in their versions of crt1.o. existing archs should continue to provide it as long as there is an interest in having newly-linked applications be able to run on old versions of musl; at some point in the future, this support can be removed.
2013-07-21 07:00:54 +00:00
return (void *)aux[AT_ENTRY];
}
void *dlopen(const char *file, int mode)
{
struct dso *volatile p, *orig_tail, *next;
size_t orig_tls_cnt, orig_tls_offset, orig_tls_align;
size_t i;
int cs;
jmp_buf jb;
if (!file) return head;
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &cs);
pthread_rwlock_wrlock(&lock);
__inhibit_ptc();
p = 0;
orig_tls_cnt = tls_cnt;
orig_tls_offset = tls_offset;
orig_tls_align = tls_align;
orig_tail = tail;
noload = mode & RTLD_NOLOAD;
rtld_fail = &jb;
if (setjmp(*rtld_fail)) {
/* Clean up anything new that was (partially) loaded */
if (p && p->deps) for (i=0; p->deps[i]; i++)
if (p->deps[i]->global < 0)
p->deps[i]->global = 0;
for (p=orig_tail->next; p; p=next) {
next = p->next;
munmap(p->map, p->map_len);
while (p->td_index) {
void *tmp = p->td_index->next;
free(p->td_index);
p->td_index = tmp;
}
free(p->deps);
free(p);
}
tls_cnt = orig_tls_cnt;
tls_offset = orig_tls_offset;
tls_align = orig_tls_align;
tail = orig_tail;
tail->next = 0;
p = 0;
errflag = 1;
goto end;
} else p = load_library(file, head);
if (!p) {
snprintf(errbuf, sizeof errbuf, noload ?
"Library %s is not already loaded" :
"Error loading shared library %s: %m",
file);
errflag = 1;
goto end;
}
/* First load handling */
if (!p->deps) {
load_deps(p);
if (p->deps) for (i=0; p->deps[i]; i++)
if (!p->deps[i]->global)
p->deps[i]->global = -1;
if (!p->global) p->global = -1;
reloc_all(p);
if (p->deps) for (i=0; p->deps[i]; i++)
if (p->deps[i]->global < 0)
p->deps[i]->global = 0;
if (p->global < 0) p->global = 0;
}
if (mode & RTLD_GLOBAL) {
if (p->deps) for (i=0; p->deps[i]; i++)
p->deps[i]->global = 1;
p->global = 1;
}
update_tls_size();
_dl_debug_state();
orig_tail = tail;
end:
__release_ptc();
if (p) gencnt++;
pthread_rwlock_unlock(&lock);
if (p) do_init_fini(orig_tail);
pthread_setcancelstate(cs, 0);
return p;
}
static int invalid_dso_handle(void *h)
{
struct dso *p;
for (p=head; p; p=p->next) if (h==p) return 0;
snprintf(errbuf, sizeof errbuf, "Invalid library handle %p", (void *)h);
errflag = 1;
return 1;
}
void *__tls_get_addr(size_t *);
static void *do_dlsym(struct dso *p, const char *s, void *ra)
{
size_t i;
uint32_t h = 0, gh = 0;
Sym *sym;
if (p == head || p == RTLD_DEFAULT || p == RTLD_NEXT) {
if (p == RTLD_DEFAULT) {
p = head;
} else if (p == RTLD_NEXT) {
for (p=head; p && (unsigned char *)ra-p->map>p->map_len; p=p->next);
if (!p) p=head;
p = p->next;
}
struct symdef def = find_sym(p, s, 0);
if (!def.sym) goto failed;
if ((def.sym->st_info&0xf) == STT_TLS)
return __tls_get_addr((size_t []){def.dso->tls_id, def.sym->st_value});
return def.dso->base + def.sym->st_value;
}
if (p != RTLD_DEFAULT && p != RTLD_NEXT && invalid_dso_handle(p))
return 0;
if (p->ghashtab) {
gh = gnu_hash(s);
sym = gnu_lookup(s, gh, p);
} else {
h = sysv_hash(s);
sym = sysv_lookup(s, h, p);
}
if (sym && (sym->st_info&0xf) == STT_TLS)
return __tls_get_addr((size_t []){p->tls_id, sym->st_value});
if (sym && sym->st_value && (1<<(sym->st_info&0xf) & OK_TYPES))
return p->base + sym->st_value;
if (p->deps) for (i=0; p->deps[i]; i++) {
if (p->deps[i]->ghashtab) {
if (!gh) gh = gnu_hash(s);
sym = gnu_lookup(s, gh, p->deps[i]);
} else {
if (!h) h = sysv_hash(s);
sym = sysv_lookup(s, h, p->deps[i]);
}
if (sym && (sym->st_info&0xf) == STT_TLS)
return __tls_get_addr((size_t []){p->deps[i]->tls_id, sym->st_value});
if (sym && sym->st_value && (1<<(sym->st_info&0xf) & OK_TYPES))
return p->deps[i]->base + sym->st_value;
}
failed:
errflag = 1;
snprintf(errbuf, sizeof errbuf, "Symbol not found: %s", s);
return 0;
}
int __dladdr(const void *addr, Dl_info *info)
{
struct dso *p;
Sym *sym;
uint32_t nsym;
char *strings;
size_t i;
void *best = 0;
char *bestname;
pthread_rwlock_rdlock(&lock);
for (p=head; p && (unsigned char *)addr-p->map>p->map_len; p=p->next);
pthread_rwlock_unlock(&lock);
if (!p) return 0;
sym = p->syms;
strings = p->strings;
if (p->hashtab) {
nsym = p->hashtab[1];
} else {
uint32_t *buckets;
uint32_t *hashval;
buckets = p->ghashtab + 4 + (p->ghashtab[2]*sizeof(size_t)/4);
sym += p->ghashtab[1];
for (i = nsym = 0; i < p->ghashtab[0]; i++) {
if (buckets[i] > nsym)
nsym = buckets[i];
}
if (nsym) {
nsym -= p->ghashtab[1];
hashval = buckets + p->ghashtab[0] + nsym;
do nsym++;
while (!(*hashval++ & 1));
}
}
for (; nsym; nsym--, sym++) {
if (sym->st_value
&& (1<<(sym->st_info&0xf) & OK_TYPES)
&& (1<<(sym->st_info>>4) & OK_BINDS)) {
void *symaddr = p->base + sym->st_value;
if (symaddr > addr || symaddr < best)
continue;
best = symaddr;
bestname = strings + sym->st_name;
if (addr == symaddr)
break;
}
}
if (!best) return 0;
info->dli_fname = p->name;
info->dli_fbase = p->base;
info->dli_sname = bestname;
info->dli_saddr = best;
return 1;
}
void *__dlsym(void *restrict p, const char *restrict s, void *restrict ra)
{
void *res;
pthread_rwlock_rdlock(&lock);
res = do_dlsym(p, s, ra);
pthread_rwlock_unlock(&lock);
return res;
}
int dl_iterate_phdr(int(*callback)(struct dl_phdr_info *info, size_t size, void *data), void *data)
{
struct dso *current;
struct dl_phdr_info info;
int ret = 0;
for(current = head; current;) {
info.dlpi_addr = (uintptr_t)current->base;
info.dlpi_name = current->name;
info.dlpi_phdr = current->phdr;
info.dlpi_phnum = current->phnum;
info.dlpi_adds = gencnt;
info.dlpi_subs = 0;
info.dlpi_tls_modid = current->tls_id;
info.dlpi_tls_data = current->tls_image;
ret = (callback)(&info, sizeof (info), data);
if (ret != 0) break;
pthread_rwlock_rdlock(&lock);
current = current->next;
pthread_rwlock_unlock(&lock);
}
return ret;
}
#else
static int invalid_dso_handle(void *h)
{
snprintf(errbuf, sizeof errbuf, "Invalid library handle %p", (void *)h);
errflag = 1;
return 1;
}
void *dlopen(const char *file, int mode)
{
strcpy(errbuf, "Dynamic loading not supported");
errflag = 1;
return 0;
}
void *__dlsym(void *restrict p, const char *restrict s, void *restrict ra)
{
errflag = 1;
snprintf(errbuf, sizeof errbuf, "Symbol not found: %s", s);
return 0;
}
int __dladdr (const void *addr, Dl_info *info)
{
return 0;
}
#endif
2013-06-29 16:46:46 +00:00
int __dlinfo(void *dso, int req, void *res)
{
if (invalid_dso_handle(dso)) return -1;
if (req != RTLD_DI_LINKMAP) {
snprintf(errbuf, sizeof errbuf, "Unsupported request %d", req);
errflag = 1;
return -1;
}
*(struct link_map **)res = dso;
return 0;
}
char *dlerror()
{
if (!errflag) return 0;
errflag = 0;
return errbuf;
}
int dlclose(void *p)
{
return invalid_dso_handle(p);
}