mirror of
https://github.com/mpv-player/mpv
synced 2024-12-19 13:21:13 +00:00
e24087509a
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@10990 b3059339-0415-0410-9bf9-f77b7e298cf2
292 lines
9.4 KiB
C
292 lines
9.4 KiB
C
/*
|
||
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
|
||
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
|
||
**
|
||
** This program is free software; you can redistribute it and/or modify
|
||
** it under the terms of the GNU General Public License as published by
|
||
** the Free Software Foundation; either version 2 of the License, or
|
||
** (at your option) any later version.
|
||
**
|
||
** This program is distributed in the hope that it will be useful,
|
||
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
** GNU General Public License for more details.
|
||
**
|
||
** You should have received a copy of the GNU General Public License
|
||
** along with this program; if not, write to the Free Software
|
||
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
**
|
||
** Any non-GPL usage of this software or parts of this software is strictly
|
||
** forbidden.
|
||
**
|
||
** Commercial non-GPL licensing of this software is possible.
|
||
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
|
||
**
|
||
** $Id: mdct.c,v 1.28 2003/09/30 12:43:05 menno Exp $
|
||
**/
|
||
|
||
/*
|
||
* Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform)
|
||
* and consists of three steps: pre-(I)FFT complex multiplication, complex
|
||
* (I)FFT, post-(I)FFT complex multiplication,
|
||
*
|
||
* As described in:
|
||
* P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the
|
||
* Implementation of Filter Banks Based on 'Time Domain Aliasing
|
||
* Cancellation’," IEEE Proc. on ICASSP‘91, 1991, pp. 2209-2212.
|
||
*
|
||
*
|
||
* As of April 6th 2002 completely rewritten.
|
||
* This (I)MDCT can now be used for any data size n, where n is divisible by 8.
|
||
*
|
||
*/
|
||
|
||
#include "common.h"
|
||
#include "structs.h"
|
||
|
||
#include <stdlib.h>
|
||
#ifdef _WIN32_WCE
|
||
#define assert(x)
|
||
#else
|
||
#include <assert.h>
|
||
#endif
|
||
|
||
#include "cfft.h"
|
||
#include "mdct.h"
|
||
|
||
/* const_tab[]:
|
||
0: sqrt(2 / N)
|
||
1: cos(2 * PI / N)
|
||
2: sin(2 * PI / N)
|
||
3: cos(2 * PI * (1/8) / N)
|
||
4: sin(2 * PI * (1/8) / N)
|
||
*/
|
||
#ifndef FIXED_POINT
|
||
#ifdef _MSC_VER
|
||
#pragma warning(disable:4305)
|
||
#pragma warning(disable:4244)
|
||
#endif
|
||
real_t const_tab[][5] =
|
||
{
|
||
{ COEF_CONST(0.0312500000), COEF_CONST(0.9999952938), COEF_CONST(0.0030679568),
|
||
COEF_CONST(0.9999999265), COEF_CONST(0.0003834952) }, /* 2048 */
|
||
{ COEF_CONST(0.0322748612), COEF_CONST(0.9999946356), COEF_CONST(0.0032724866),
|
||
COEF_CONST(0.9999999404), COEF_CONST(0.0004090615) }, /* 1920 */
|
||
{ COEF_CONST(0.0441941738), COEF_CONST(0.9999811649), COEF_CONST(0.0061358847),
|
||
COEF_CONST(0.9999997020), COEF_CONST(0.0007669903) }, /* 1024 */
|
||
{ COEF_CONST(0.0456435465), COEF_CONST(0.9999786019), COEF_CONST(0.0065449383),
|
||
COEF_CONST(0.9999996424), COEF_CONST(0.0008181230) }, /* 960 */
|
||
{ COEF_CONST(0.0883883476), COEF_CONST(0.9996988177), COEF_CONST(0.0245412290),
|
||
COEF_CONST(0.9999952912), COEF_CONST(0.0030679568) }, /* 256 */
|
||
{ COEF_CONST(0.0912870929), COEF_CONST(0.9996573329), COEF_CONST(0.0261769500),
|
||
COEF_CONST(0.9999946356), COEF_CONST(0.0032724866) } /* 240 */
|
||
#ifdef SSR_DEC
|
||
,{ COEF_CONST(0.062500000), COEF_CONST(0.999924702), COEF_CONST(0.012271538),
|
||
COEF_CONST(0.999998823), COEF_CONST(0.00153398) }, /* 512 */
|
||
{ COEF_CONST(0.176776695), COEF_CONST(0.995184727), COEF_CONST(0.09801714),
|
||
COEF_CONST(0.999924702), COEF_CONST(0.012271538) } /* 64 */
|
||
#endif
|
||
};
|
||
#else
|
||
real_t const_tab[][5] =
|
||
{
|
||
{ COEF_CONST(1), COEF_CONST(0.9999952938), COEF_CONST(0.0030679568),
|
||
COEF_CONST(0.9999999265), COEF_CONST(0.0003834952) }, /* 2048 */
|
||
{ COEF_CONST(/* sqrt(1024/960) */ 1.03279556), COEF_CONST(0.9999946356), COEF_CONST(0.0032724866),
|
||
COEF_CONST(0), COEF_CONST(0.0004090615) }, /* 1920 */
|
||
{ COEF_CONST(1), COEF_CONST(0.9999811649), COEF_CONST(0.0061358847),
|
||
COEF_CONST(0.9999997020), COEF_CONST(0.0007669903) }, /* 1024 */
|
||
{ COEF_CONST(/* sqrt(512/480) */ 1.03279556), COEF_CONST(0.9999786019), COEF_CONST(0.0065449383),
|
||
COEF_CONST(0.9999996424), COEF_CONST(0.0008181230) }, /* 960 */
|
||
{ COEF_CONST(1), COEF_CONST(0.9996988177), COEF_CONST(0.0245412290),
|
||
COEF_CONST(0.9999952912), COEF_CONST(0.0030679568) }, /* 256 */
|
||
{ COEF_CONST(/* sqrt(256/240) */ 1.03279556), COEF_CONST(0.9996573329), COEF_CONST(0.0261769500),
|
||
COEF_CONST(0.9999946356), COEF_CONST(0.0032724866) } /* 240 */
|
||
#ifdef SSR_DEC
|
||
,{ COEF_CONST(0), COEF_CONST(0.999924702), COEF_CONST(0.012271538),
|
||
COEF_CONST(0.999998823), COEF_CONST(0.00153398) }, /* 512 */
|
||
{ COEF_CONST(0), COEF_CONST(0.995184727), COEF_CONST(0.09801714),
|
||
COEF_CONST(0.999924702), COEF_CONST(0.012271538) } /* 64 */
|
||
#endif
|
||
};
|
||
#endif
|
||
|
||
uint8_t map_N_to_idx(uint16_t N)
|
||
{
|
||
/* gives an index into const_tab above */
|
||
/* for normal AAC deocding (eg. no scalable profile) only */
|
||
/* index 0 and 4 will be used */
|
||
switch(N)
|
||
{
|
||
case 2048: return 0;
|
||
case 1920: return 1;
|
||
case 1024: return 2;
|
||
case 960: return 3;
|
||
case 256: return 4;
|
||
case 240: return 5;
|
||
#ifdef SSR_DEC
|
||
case 512: return 6;
|
||
case 64: return 7;
|
||
#endif
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
mdct_info *faad_mdct_init(uint16_t N)
|
||
{
|
||
uint16_t k, N_idx;
|
||
real_t cangle, sangle, c, s, cold;
|
||
real_t scale;
|
||
|
||
mdct_info *mdct = (mdct_info*)malloc(sizeof(mdct_info));
|
||
|
||
assert(N % 8 == 0);
|
||
|
||
mdct->N = N;
|
||
mdct->sincos = (complex_t*)malloc(N/4*sizeof(complex_t));
|
||
mdct->Z1 = (complex_t*)malloc(N/4*sizeof(complex_t));
|
||
|
||
N_idx = map_N_to_idx(N);
|
||
|
||
scale = const_tab[N_idx][0];
|
||
cangle = const_tab[N_idx][1];
|
||
sangle = const_tab[N_idx][2];
|
||
c = const_tab[N_idx][3];
|
||
s = const_tab[N_idx][4];
|
||
|
||
/* (co)sine table build using recurrence relations */
|
||
/* this can also be done using static table lookup or */
|
||
/* some form of interpolation */
|
||
for (k = 0; k < N/4; k++)
|
||
{
|
||
#if 1
|
||
RE(mdct->sincos[k]) = -1*MUL_C_C(c,scale);
|
||
IM(mdct->sincos[k]) = -1*MUL_C_C(s,scale);
|
||
|
||
cold = c;
|
||
c = MUL_C_C(c,cangle) - MUL_C_C(s,sangle);
|
||
s = MUL_C_C(s,cangle) + MUL_C_C(cold,sangle);
|
||
#else
|
||
/* no recurrence, just sines */
|
||
RE(mdct->sincos[k]) = -scale*cos(2.0*M_PI*(k+1./8.) / (float)N);
|
||
IM(mdct->sincos[k]) = -scale*sin(2.0*M_PI*(k+1./8.) / (float)N);
|
||
#endif
|
||
}
|
||
|
||
/* initialise fft */
|
||
mdct->cfft = cffti(N/4);
|
||
|
||
return mdct;
|
||
}
|
||
|
||
void faad_mdct_end(mdct_info *mdct)
|
||
{
|
||
if (mdct != NULL)
|
||
{
|
||
cfftu(mdct->cfft);
|
||
|
||
if (mdct->Z1) free(mdct->Z1);
|
||
if (mdct->sincos) free(mdct->sincos);
|
||
|
||
free(mdct);
|
||
}
|
||
}
|
||
|
||
void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
|
||
{
|
||
uint16_t k;
|
||
|
||
complex_t x;
|
||
complex_t *Z1 = mdct->Z1;
|
||
complex_t *sincos = mdct->sincos;
|
||
|
||
uint16_t N = mdct->N;
|
||
uint16_t N2 = N >> 1;
|
||
uint16_t N4 = N >> 2;
|
||
uint16_t N8 = N >> 3;
|
||
|
||
/* pre-IFFT complex multiplication */
|
||
for (k = 0; k < N4; k++)
|
||
{
|
||
RE(Z1[k]) = MUL_R_C(X_in[N2 - 1 - 2*k], RE(sincos[k])) - MUL_R_C(X_in[2*k], IM(sincos[k]));
|
||
IM(Z1[k]) = MUL_R_C(X_in[2*k], RE(sincos[k])) + MUL_R_C(X_in[N2 - 1 - 2*k], IM(sincos[k]));
|
||
}
|
||
|
||
/* complex IFFT, any non-scaling FFT can be used here */
|
||
cfftb(mdct->cfft, Z1);
|
||
|
||
/* post-IFFT complex multiplication */
|
||
for (k = 0; k < N4; k++)
|
||
{
|
||
RE(x) = RE(Z1[k]);
|
||
IM(x) = IM(Z1[k]);
|
||
|
||
RE(Z1[k]) = MUL_R_C(RE(x), RE(sincos[k])) - MUL_R_C(IM(x), IM(sincos[k]));
|
||
IM(Z1[k]) = MUL_R_C(IM(x), RE(sincos[k])) + MUL_R_C(RE(x), IM(sincos[k]));
|
||
}
|
||
|
||
/* reordering */
|
||
for (k = 0; k < N8; k++)
|
||
{
|
||
X_out[ 2*k] = IM(Z1[N8 + k]);
|
||
X_out[ 1 + 2*k] = -RE(Z1[N8 - 1 - k]);
|
||
X_out[N4 + 2*k] = RE(Z1[ k]);
|
||
X_out[N4 + 1 + 2*k] = -IM(Z1[N4 - 1 - k]);
|
||
X_out[N2 + 2*k] = RE(Z1[N8 + k]);
|
||
X_out[N2 + 1 + 2*k] = -IM(Z1[N8 - 1 - k]);
|
||
X_out[N2 + N4 + 2*k] = -IM(Z1[ k]);
|
||
X_out[N2 + N4 + 1 + 2*k] = RE(Z1[N4 - 1 - k]);
|
||
}
|
||
}
|
||
|
||
#ifdef LTP_DEC
|
||
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
|
||
{
|
||
uint16_t k;
|
||
|
||
complex_t x;
|
||
complex_t *Z1 = mdct->Z1;
|
||
complex_t *sincos = mdct->sincos;
|
||
|
||
uint16_t N = mdct->N;
|
||
uint16_t N2 = N >> 1;
|
||
uint16_t N4 = N >> 2;
|
||
uint16_t N8 = N >> 3;
|
||
|
||
real_t scale = REAL_CONST(N);
|
||
|
||
/* pre-FFT complex multiplication */
|
||
for (k = 0; k < N8; k++)
|
||
{
|
||
uint16_t n = k << 1;
|
||
RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 + n];
|
||
IM(x) = X_in[ N4 + n] - X_in[ N4 - 1 - n];
|
||
|
||
RE(Z1[k]) = -MUL_R_C(RE(x), RE(sincos[k])) - MUL_R_C(IM(x), IM(sincos[k]));
|
||
IM(Z1[k]) = -MUL_R_C(IM(x), RE(sincos[k])) + MUL_R_C(RE(x), IM(sincos[k]));
|
||
|
||
RE(x) = X_in[N2 - 1 - n] - X_in[ n];
|
||
IM(x) = X_in[N2 + n] + X_in[N - 1 - n];
|
||
|
||
RE(Z1[k + N8]) = -MUL_R_C(RE(x), RE(sincos[k + N8])) - MUL_R_C(IM(x), IM(sincos[k + N8]));
|
||
IM(Z1[k + N8]) = -MUL_R_C(IM(x), RE(sincos[k + N8])) + MUL_R_C(RE(x), IM(sincos[k + N8]));
|
||
}
|
||
|
||
/* complex FFT, any non-scaling FFT can be used here */
|
||
cfftf(mdct->cfft, Z1);
|
||
|
||
/* post-FFT complex multiplication */
|
||
for (k = 0; k < N4; k++)
|
||
{
|
||
uint16_t n = k << 1;
|
||
RE(x) = MUL(MUL_R_C(RE(Z1[k]), RE(sincos[k])) + MUL_R_C(IM(Z1[k]), IM(sincos[k])), scale);
|
||
IM(x) = MUL(MUL_R_C(IM(Z1[k]), RE(sincos[k])) - MUL_R_C(RE(Z1[k]), IM(sincos[k])), scale);
|
||
|
||
X_out[ n] = RE(x);
|
||
X_out[N2 - 1 - n] = -IM(x);
|
||
X_out[N2 + n] = IM(x);
|
||
X_out[N - 1 - n] = -RE(x);
|
||
}
|
||
}
|
||
#endif
|