mirror of
https://github.com/mpv-player/mpv
synced 2024-12-22 14:52:43 +00:00
f47a4fc3d9
Use the time as returned by mp_time_us() for mpthread_cond_timedwait(), instead of calculating the struct timespec value based on a timeout. This (probably) makes it easier to wait for a specific deadline.
362 lines
11 KiB
C
362 lines
11 KiB
C
/*
|
|
* This file is part of mpv.
|
|
*
|
|
* mpv is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* mpv is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with mpv. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stddef.h>
|
|
#include <pthread.h>
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
|
|
#include "ao.h"
|
|
#include "internal.h"
|
|
#include "audio/format.h"
|
|
|
|
#include "common/msg.h"
|
|
#include "common/common.h"
|
|
|
|
#include "input/input.h"
|
|
|
|
#include "osdep/threads.h"
|
|
#include "osdep/timer.h"
|
|
#include "compat/atomics.h"
|
|
|
|
#include "audio/audio.h"
|
|
#include "audio/audio_buffer.h"
|
|
|
|
struct ao_push_state {
|
|
pthread_t thread;
|
|
pthread_mutex_t lock;
|
|
|
|
// uses a separate lock to avoid lock order issues with ao_need_data()
|
|
pthread_mutex_t wakeup_lock;
|
|
pthread_cond_t wakeup;
|
|
|
|
// --- protected by lock
|
|
|
|
struct mp_audio_buffer *buffer;
|
|
|
|
bool terminate;
|
|
bool playing;
|
|
|
|
// Whether the current buffer contains the complete audio.
|
|
bool final_chunk;
|
|
double expected_end_time;
|
|
|
|
// -- protected by wakeup_lock
|
|
bool need_wakeup;
|
|
};
|
|
|
|
static void wakeup_playthread(struct ao *ao)
|
|
{
|
|
struct ao_push_state *p = ao->api_priv;
|
|
pthread_mutex_lock(&p->wakeup_lock);
|
|
p->need_wakeup = true;
|
|
pthread_cond_signal(&p->wakeup);
|
|
pthread_mutex_unlock(&p->wakeup_lock);
|
|
}
|
|
|
|
static int control(struct ao *ao, enum aocontrol cmd, void *arg)
|
|
{
|
|
int r = CONTROL_UNKNOWN;
|
|
if (ao->driver->control) {
|
|
struct ao_push_state *p = ao->api_priv;
|
|
pthread_mutex_lock(&p->lock);
|
|
r = ao->driver->control(ao, cmd, arg);
|
|
pthread_mutex_unlock(&p->lock);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static float get_delay(struct ao *ao)
|
|
{
|
|
struct ao_push_state *p = ao->api_priv;
|
|
pthread_mutex_lock(&p->lock);
|
|
double driver_delay = 0;
|
|
if (ao->driver->get_delay)
|
|
driver_delay = ao->driver->get_delay(ao);
|
|
double delay = driver_delay + mp_audio_buffer_seconds(p->buffer);
|
|
pthread_mutex_unlock(&p->lock);
|
|
if (delay >= AO_EOF_DELAY && p->expected_end_time) {
|
|
if (mp_time_sec() > p->expected_end_time) {
|
|
MP_ERR(ao, "Audio device EOF reporting is broken!\n");
|
|
MP_ERR(ao, "Please report this problem.\n");
|
|
delay = 0;
|
|
}
|
|
}
|
|
return delay;
|
|
}
|
|
|
|
static void reset(struct ao *ao)
|
|
{
|
|
struct ao_push_state *p = ao->api_priv;
|
|
pthread_mutex_lock(&p->lock);
|
|
if (ao->driver->reset)
|
|
ao->driver->reset(ao);
|
|
mp_audio_buffer_clear(p->buffer);
|
|
p->playing = false;
|
|
wakeup_playthread(ao);
|
|
pthread_mutex_unlock(&p->lock);
|
|
}
|
|
|
|
static void pause(struct ao *ao)
|
|
{
|
|
struct ao_push_state *p = ao->api_priv;
|
|
pthread_mutex_lock(&p->lock);
|
|
if (ao->driver->pause)
|
|
ao->driver->pause(ao);
|
|
p->playing = false;
|
|
wakeup_playthread(ao);
|
|
pthread_mutex_unlock(&p->lock);
|
|
}
|
|
|
|
static void resume(struct ao *ao)
|
|
{
|
|
struct ao_push_state *p = ao->api_priv;
|
|
pthread_mutex_lock(&p->lock);
|
|
if (ao->driver->resume)
|
|
ao->driver->resume(ao);
|
|
p->playing = true; // tentatively
|
|
p->expected_end_time = 0;
|
|
wakeup_playthread(ao);
|
|
pthread_mutex_unlock(&p->lock);
|
|
}
|
|
|
|
static void drain(struct ao *ao)
|
|
{
|
|
if (ao->driver->drain) {
|
|
struct ao_push_state *p = ao->api_priv;
|
|
pthread_mutex_lock(&p->lock);
|
|
ao->driver->drain(ao);
|
|
pthread_mutex_unlock(&p->lock);
|
|
} else {
|
|
ao_wait_drain(ao);
|
|
}
|
|
}
|
|
|
|
static int unlocked_get_space(struct ao *ao)
|
|
{
|
|
struct ao_push_state *p = ao->api_priv;
|
|
int space = mp_audio_buffer_get_write_available(p->buffer);
|
|
if (ao->driver->get_space) {
|
|
// The following code attempts to keep the total buffered audio to
|
|
// MIN_BUFFER in order to improve latency.
|
|
int device_space = ao->driver->get_space(ao);
|
|
int device_buffered = ao->device_buffer - device_space;
|
|
int soft_buffered = mp_audio_buffer_samples(p->buffer);
|
|
int min_buffer = MIN_BUFFER * ao->samplerate;
|
|
int missing = min_buffer - device_buffered - soft_buffered;
|
|
// But always keep the device's buffer filled as much as we can.
|
|
int device_missing = device_space - soft_buffered;
|
|
missing = MPMAX(missing, device_missing);
|
|
space = MPMIN(space, missing);
|
|
space = MPMAX(0, space);
|
|
}
|
|
return space;
|
|
}
|
|
|
|
static int get_space(struct ao *ao)
|
|
{
|
|
struct ao_push_state *p = ao->api_priv;
|
|
pthread_mutex_lock(&p->lock);
|
|
int space = unlocked_get_space(ao);
|
|
pthread_mutex_unlock(&p->lock);
|
|
return space;
|
|
}
|
|
|
|
static int play(struct ao *ao, void **data, int samples, int flags)
|
|
{
|
|
struct ao_push_state *p = ao->api_priv;
|
|
|
|
pthread_mutex_lock(&p->lock);
|
|
|
|
int write_samples = mp_audio_buffer_get_write_available(p->buffer);
|
|
write_samples = MPMIN(write_samples, samples);
|
|
|
|
struct mp_audio audio;
|
|
mp_audio_buffer_get_format(p->buffer, &audio);
|
|
for (int n = 0; n < ao->num_planes; n++)
|
|
audio.planes[n] = data[n];
|
|
audio.samples = write_samples;
|
|
mp_audio_buffer_append(p->buffer, &audio);
|
|
|
|
p->final_chunk = !!(flags & AOPLAY_FINAL_CHUNK);
|
|
p->playing = true;
|
|
p->expected_end_time = 0;
|
|
|
|
wakeup_playthread(ao);
|
|
pthread_mutex_unlock(&p->lock);
|
|
return write_samples;
|
|
}
|
|
|
|
// called locked
|
|
static int ao_play_data(struct ao *ao)
|
|
{
|
|
struct ao_push_state *p = ao->api_priv;
|
|
struct mp_audio data;
|
|
mp_audio_buffer_peek(p->buffer, &data);
|
|
int max = data.samples;
|
|
int space = ao->driver->get_space ? ao->driver->get_space(ao) : INT_MAX;
|
|
if (data.samples > space)
|
|
data.samples = space;
|
|
if (data.samples <= 0)
|
|
return 0;
|
|
MP_STATS(ao, "start ao fill");
|
|
int flags = 0;
|
|
if (p->final_chunk && data.samples == max)
|
|
flags |= AOPLAY_FINAL_CHUNK;
|
|
int r = ao->driver->play(ao, data.planes, data.samples, flags);
|
|
if (r > data.samples) {
|
|
MP_WARN(ao, "Audio device returned non-sense value.\n");
|
|
r = data.samples;
|
|
}
|
|
if (r > 0)
|
|
mp_audio_buffer_skip(p->buffer, r);
|
|
if (p->final_chunk && mp_audio_buffer_samples(p->buffer) == 0) {
|
|
p->playing = false;
|
|
p->expected_end_time = mp_time_sec() + AO_EOF_DELAY + 0.25; // + margin
|
|
if (ao->driver->get_delay)
|
|
p->expected_end_time += ao->driver->get_delay(ao);
|
|
}
|
|
MP_STATS(ao, "end ao fill");
|
|
return r;
|
|
}
|
|
|
|
static void *playthread(void *arg)
|
|
{
|
|
struct ao *ao = arg;
|
|
struct ao_push_state *p = ao->api_priv;
|
|
while (1) {
|
|
pthread_mutex_lock(&p->lock);
|
|
if (p->terminate) {
|
|
pthread_mutex_unlock(&p->lock);
|
|
return NULL;
|
|
}
|
|
double timeout = 2.0;
|
|
if (p->playing) {
|
|
int r = ao_play_data(ao);
|
|
// The device buffers are not necessarily full, but writing to the
|
|
// AO buffer will wake up this thread anyway.
|
|
bool buffers_full = r <= 0;
|
|
// We have to estimate when the AO needs data again.
|
|
if (buffers_full && ao->driver->get_delay) {
|
|
float buffered_audio = ao->driver->get_delay(ao);
|
|
timeout = buffered_audio - 0.050;
|
|
// Keep extra safety margin if the buffers are large
|
|
if (timeout > 0.100)
|
|
timeout = MPMAX(timeout - 0.200, 0.100);
|
|
} else {
|
|
timeout = 0;
|
|
}
|
|
// Half of the buffer played -> wakeup playback thread to get more.
|
|
double min_wait = ao->device_buffer / (double)ao->samplerate;
|
|
if (timeout <= min_wait / 2 + 0.001 && unlocked_get_space(ao) > 0)
|
|
mp_input_wakeup(ao->input_ctx);
|
|
// Avoid wasting CPU - this assumes ao_play_data() usually fills the
|
|
// audio buffer as far as possible, so even if the device buffer
|
|
// is not full, we can only wait for the core.
|
|
timeout = MPMAX(timeout, min_wait * 0.75);
|
|
}
|
|
pthread_mutex_unlock(&p->lock);
|
|
MP_STATS(ao, "start audio wait");
|
|
pthread_mutex_lock(&p->wakeup_lock);
|
|
if (!p->need_wakeup)
|
|
mpthread_cond_timedwait_rel(&p->wakeup, &p->wakeup_lock, timeout);
|
|
p->need_wakeup = false;
|
|
pthread_mutex_unlock(&p->wakeup_lock);
|
|
MP_STATS(ao, "end audio wait");
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void uninit(struct ao *ao)
|
|
{
|
|
struct ao_push_state *p = ao->api_priv;
|
|
|
|
pthread_mutex_lock(&p->lock);
|
|
p->terminate = true;
|
|
wakeup_playthread(ao);
|
|
pthread_mutex_unlock(&p->lock);
|
|
|
|
pthread_join(p->thread, NULL);
|
|
|
|
ao->driver->uninit(ao);
|
|
|
|
pthread_cond_destroy(&p->wakeup);
|
|
pthread_mutex_destroy(&p->lock);
|
|
pthread_mutex_destroy(&p->wakeup_lock);
|
|
}
|
|
|
|
static int init(struct ao *ao)
|
|
{
|
|
struct ao_push_state *p = ao->api_priv;
|
|
|
|
pthread_mutex_init(&p->lock, NULL);
|
|
pthread_mutex_init(&p->wakeup_lock, NULL);
|
|
pthread_cond_init(&p->wakeup, NULL);
|
|
|
|
p->buffer = mp_audio_buffer_create(ao);
|
|
mp_audio_buffer_reinit_fmt(p->buffer, ao->format,
|
|
&ao->channels, ao->samplerate);
|
|
mp_audio_buffer_preallocate_min(p->buffer, ao->buffer);
|
|
if (pthread_create(&p->thread, NULL, playthread, ao)) {
|
|
ao->driver->uninit(ao);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const struct ao_driver ao_api_push = {
|
|
.init = init,
|
|
.control = control,
|
|
.uninit = uninit,
|
|
.reset = reset,
|
|
.get_space = get_space,
|
|
.play = play,
|
|
.get_delay = get_delay,
|
|
.pause = pause,
|
|
.resume = resume,
|
|
.drain = drain,
|
|
.priv_size = sizeof(struct ao_push_state),
|
|
};
|
|
|
|
// Must be called locked.
|
|
int ao_play_silence(struct ao *ao, int samples)
|
|
{
|
|
assert(ao->api == &ao_api_push);
|
|
if (samples <= 0 || AF_FORMAT_IS_SPECIAL(ao->format) || !ao->driver->play)
|
|
return 0;
|
|
char *p = talloc_size(NULL, samples * ao->sstride);
|
|
af_fill_silence(p, samples * ao->sstride, ao->format);
|
|
void *tmp[MP_NUM_CHANNELS];
|
|
for (int n = 0; n < MP_NUM_CHANNELS; n++)
|
|
tmp[n] = p;
|
|
int r = ao->driver->play(ao, tmp, samples, 0);
|
|
talloc_free(p);
|
|
return r;
|
|
}
|
|
|
|
// Notify the core that new data should be sent to the AO. Normally, the core
|
|
// uses a heuristic based on ao_delay() when to refill the buffers, but this
|
|
// can be used to reduce wait times. Can be called from any thread.
|
|
void ao_need_data(struct ao *ao)
|
|
{
|
|
assert(ao->api == &ao_api_push);
|
|
|
|
// wakeup the play thread at least once
|
|
wakeup_playthread(ao);
|
|
}
|