mirror of https://github.com/mpv-player/mpv
663 lines
21 KiB
C
663 lines
21 KiB
C
/*
|
|
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
|
|
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
|
|
**
|
|
** This program is free software; you can redistribute it and/or modify
|
|
** it under the terms of the GNU General Public License as published by
|
|
** the Free Software Foundation; either version 2 of the License, or
|
|
** (at your option) any later version.
|
|
**
|
|
** This program is distributed in the hope that it will be useful,
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
** GNU General Public License for more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public License
|
|
** along with this program; if not, write to the Free Software
|
|
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
**
|
|
** Any non-GPL usage of this software or parts of this software is strictly
|
|
** forbidden.
|
|
**
|
|
** Commercial non-GPL licensing of this software is possible.
|
|
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
|
|
**
|
|
** $Id: sbr_hfadj.c,v 1.4 2003/09/09 18:37:32 menno Exp $
|
|
**/
|
|
|
|
/* High Frequency adjustment */
|
|
|
|
#include "common.h"
|
|
#include "structs.h"
|
|
|
|
#ifdef SBR_DEC
|
|
|
|
#include "sbr_syntax.h"
|
|
#include "sbr_hfadj.h"
|
|
|
|
#include "sbr_noise.h"
|
|
|
|
void hf_adjustment(sbr_info *sbr, qmf_t *Xsbr
|
|
#ifdef SBR_LOW_POWER
|
|
,real_t *deg /* aliasing degree */
|
|
#endif
|
|
,uint8_t ch)
|
|
{
|
|
sbr_hfadj_info adj;
|
|
|
|
memset(&adj, 0, sizeof(sbr_hfadj_info));
|
|
|
|
map_noise_data(sbr, &adj, ch);
|
|
map_sinusoids(sbr, &adj, ch);
|
|
|
|
estimate_current_envelope(sbr, &adj, Xsbr, ch);
|
|
|
|
calculate_gain(sbr, &adj, ch);
|
|
|
|
#ifdef SBR_LOW_POWER
|
|
calc_gain_groups(sbr, &adj, deg, ch);
|
|
aliasing_reduction(sbr, &adj, deg, ch);
|
|
#endif
|
|
|
|
hf_assembly(sbr, &adj, Xsbr, ch);
|
|
}
|
|
|
|
static void map_noise_data(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
|
|
{
|
|
uint8_t l, i;
|
|
uint32_t m;
|
|
|
|
for (l = 0; l < sbr->L_E[ch]; l++)
|
|
{
|
|
for (i = 0; i < sbr->N_Q; i++)
|
|
{
|
|
for (m = sbr->f_table_noise[i]; m < sbr->f_table_noise[i+1]; m++)
|
|
{
|
|
uint8_t k;
|
|
|
|
adj->Q_mapped[m - sbr->kx][l] = 0;
|
|
|
|
for (k = 0; k < 2; k++)
|
|
{
|
|
if ((sbr->t_E[ch][l] >= sbr->t_Q[ch][k]) &&
|
|
(sbr->t_E[ch][l+1] <= sbr->t_Q[ch][k+1]))
|
|
{
|
|
adj->Q_mapped[m - sbr->kx][l] =
|
|
sbr->Q_orig[ch][i][k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void map_sinusoids(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
|
|
{
|
|
uint8_t l, i, m, k, k1, k2, delta_S, l_i, u_i;
|
|
|
|
if (sbr->bs_frame_class[ch] == FIXFIX)
|
|
{
|
|
sbr->l_A[ch] = -1;
|
|
} else if (sbr->bs_frame_class[ch] == VARFIX) {
|
|
if (sbr->bs_pointer[ch] > 1)
|
|
sbr->l_A[ch] = -1;
|
|
else
|
|
sbr->l_A[ch] = sbr->bs_pointer[ch] - 1;
|
|
} else {
|
|
if (sbr->bs_pointer[ch] == 0)
|
|
sbr->l_A[ch] = -1;
|
|
else
|
|
sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch];
|
|
}
|
|
|
|
for (l = 0; l < 5; l++)
|
|
{
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
adj->S_index_mapped[i][l] = 0;
|
|
adj->S_mapped[i][l] = 0;
|
|
}
|
|
}
|
|
|
|
for (l = 0; l < sbr->L_E[ch]; l++)
|
|
{
|
|
for (i = 0; i < sbr->N_high; i++)
|
|
{
|
|
for (m = sbr->f_table_res[HI_RES][i]; m < sbr->f_table_res[HI_RES][i+1]; m++)
|
|
{
|
|
uint8_t delta_step = 0;
|
|
if ((l >= sbr->l_A[ch]) || ((sbr->bs_add_harmonic_prev[ch][i]) &&
|
|
(sbr->bs_add_harmonic_flag_prev[ch])))
|
|
{
|
|
delta_step = 1;
|
|
}
|
|
|
|
if (m == (int32_t)((real_t)(sbr->f_table_res[HI_RES][i+1]+sbr->f_table_res[HI_RES][i])/2.))
|
|
{
|
|
adj->S_index_mapped[m - sbr->kx][l] =
|
|
delta_step * sbr->bs_add_harmonic[ch][i];
|
|
} else {
|
|
adj->S_index_mapped[m - sbr->kx][l] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (l = 0; l < sbr->L_E[ch]; l++)
|
|
{
|
|
for (i = 0; i < sbr->N_high; i++)
|
|
{
|
|
if (sbr->f[ch][l] == 1)
|
|
{
|
|
k1 = i;
|
|
k2 = i + 1;
|
|
} else {
|
|
for (k1 = 0; k1 < sbr->N_low; k1++)
|
|
{
|
|
if ((sbr->f_table_res[HI_RES][i] >= sbr->f_table_res[LO_RES][k1]) &&
|
|
(sbr->f_table_res[HI_RES][i+1] <= sbr->f_table_res[LO_RES][k1+1]))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
for (k2 = 0; k2 < sbr->N_low; k2++)
|
|
{
|
|
if ((sbr->f_table_res[HI_RES][i+1] >= sbr->f_table_res[LO_RES][k2]) &&
|
|
(sbr->f_table_res[HI_RES][i+2] <= sbr->f_table_res[LO_RES][k2+1]))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
l_i = sbr->f_table_res[sbr->f[ch][l]][k1];
|
|
u_i = sbr->f_table_res[sbr->f[ch][l]][k2];
|
|
|
|
delta_S = 0;
|
|
for (k = l_i; k < u_i; k++)
|
|
{
|
|
if (adj->S_index_mapped[k - sbr->kx][l] == 1)
|
|
delta_S = 1;
|
|
}
|
|
|
|
for (m = l_i; m < u_i; m++)
|
|
{
|
|
adj->S_mapped[m - sbr->kx][l] = delta_S;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t *Xsbr,
|
|
uint8_t ch)
|
|
{
|
|
uint8_t m, l, j, k, k_l, k_h, p;
|
|
real_t nrg, div;
|
|
|
|
if (sbr->bs_interpol_freq == 1)
|
|
{
|
|
for (l = 0; l < sbr->L_E[ch]; l++)
|
|
{
|
|
uint8_t i, l_i, u_i;
|
|
|
|
l_i = sbr->t_E[ch][l];
|
|
u_i = sbr->t_E[ch][l+1];
|
|
|
|
div = (real_t)(u_i - l_i);
|
|
|
|
for (m = 0; m < sbr->M; m++)
|
|
{
|
|
nrg = 0;
|
|
|
|
for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
|
|
{
|
|
nrg += MUL(QMF_RE(Xsbr[(i<<6) + m + sbr->kx]), QMF_RE(Xsbr[(i<<6) + m + sbr->kx]))
|
|
#ifndef SBR_LOW_POWER
|
|
+ MUL(QMF_IM(Xsbr[(i<<6) + m + sbr->kx]), QMF_IM(Xsbr[(i<<6) + m + sbr->kx]))
|
|
#endif
|
|
;
|
|
}
|
|
|
|
sbr->E_curr[ch][m][l] = nrg / div;
|
|
#ifdef SBR_LOW_POWER
|
|
sbr->E_curr[ch][m][l] *= 2;
|
|
#endif
|
|
}
|
|
}
|
|
} else {
|
|
for (l = 0; l < sbr->L_E[ch]; l++)
|
|
{
|
|
for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
|
|
{
|
|
k_l = sbr->f_table_res[sbr->f[ch][l]][p];
|
|
k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
|
|
|
|
for (k = k_l; k < k_h; k++)
|
|
{
|
|
uint8_t i, l_i, u_i;
|
|
nrg = 0.0;
|
|
|
|
l_i = sbr->t_E[ch][l];
|
|
u_i = sbr->t_E[ch][l+1];
|
|
|
|
div = (real_t)((u_i - l_i)*(k_h - k_l + 1));
|
|
|
|
for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
|
|
{
|
|
for (j = k_l; j < k_h; j++)
|
|
{
|
|
nrg += MUL(QMF_RE(Xsbr[(i<<6) + j]), QMF_RE(Xsbr[(i<<6) + j]))
|
|
#ifndef SBR_LOW_POWER
|
|
+ MUL(QMF_IM(Xsbr[(i<<6) + j]), QMF_IM(Xsbr[(i<<6) + j]))
|
|
#endif
|
|
;
|
|
}
|
|
}
|
|
|
|
sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
|
|
#ifdef SBR_LOW_POWER
|
|
sbr->E_curr[ch][k - sbr->kx][l] *= 2;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define EPS (1e-12)
|
|
|
|
#define ONE (1)
|
|
|
|
|
|
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
|
|
{
|
|
static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 };
|
|
uint8_t m, l, k, i;
|
|
|
|
real_t Q_M_lim[64];
|
|
real_t G_lim[64];
|
|
real_t G_boost;
|
|
real_t S_M[64];
|
|
uint8_t table_map_res_to_m[64];
|
|
|
|
|
|
for (l = 0; l < sbr->L_E[ch]; l++)
|
|
{
|
|
real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
|
|
|
|
for (i = 0; i < sbr->n[sbr->f[ch][l]]; i++)
|
|
{
|
|
for (m = sbr->f_table_res[sbr->f[ch][l]][i]; m < sbr->f_table_res[sbr->f[ch][l]][i+1]; m++)
|
|
{
|
|
table_map_res_to_m[m - sbr->kx] = i;
|
|
}
|
|
}
|
|
|
|
for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
|
|
{
|
|
real_t G_max;
|
|
real_t den = 0;
|
|
real_t acc1 = 0;
|
|
real_t acc2 = 0;
|
|
|
|
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
|
|
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
|
|
{
|
|
acc1 += sbr->E_orig[ch][table_map_res_to_m[m]][l];
|
|
acc2 += sbr->E_curr[ch][m][l];
|
|
}
|
|
|
|
G_max = ((EPS + acc1)/(EPS + acc2)) * limGain[sbr->bs_limiter_gains];
|
|
G_max = min(G_max, 1e10);
|
|
|
|
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
|
|
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
|
|
{
|
|
real_t d, Q_M, G;
|
|
real_t div2;
|
|
|
|
div2 = adj->Q_mapped[m][l] / (1 + adj->Q_mapped[m][l]);
|
|
Q_M = sbr->E_orig[ch][table_map_res_to_m[m]][l] * div2;
|
|
|
|
if (adj->S_mapped[m][l] == 0)
|
|
{
|
|
S_M[m] = 0;
|
|
|
|
/* fixed point: delta* can stay since it's either 1 or 0 */
|
|
d = (1 + sbr->E_curr[ch][m][l]) * (1 + delta*adj->Q_mapped[m][l]);
|
|
G = sbr->E_orig[ch][table_map_res_to_m[m]][l] / d;
|
|
} else {
|
|
real_t div;
|
|
|
|
div = adj->S_mapped[m][l] / (1. + adj->Q_mapped[m][l]);
|
|
S_M[m] = sbr->E_orig[ch][table_map_res_to_m[m]][l] * div;
|
|
G = (sbr->E_orig[ch][table_map_res_to_m[m]][l] / (1. + sbr->E_curr[ch][m][l])) * div2;
|
|
}
|
|
|
|
/* limit the additional noise energy level */
|
|
/* and apply the limiter */
|
|
if (G_max > G)
|
|
{
|
|
Q_M_lim[m] = Q_M;
|
|
G_lim[m] = G;
|
|
} else {
|
|
Q_M_lim[m] = Q_M * G_max / G;
|
|
G_lim[m] = G_max;
|
|
}
|
|
|
|
den += sbr->E_curr[ch][m][l] * G_lim[m];
|
|
if (adj->S_index_mapped[m][l])
|
|
den += S_M[m];
|
|
else if (l != sbr->l_A[ch])
|
|
den += Q_M_lim[m];
|
|
}
|
|
|
|
G_boost = (acc1 + EPS) / (den + EPS);
|
|
G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */);
|
|
|
|
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
|
|
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
|
|
{
|
|
/* apply compensation to gain, noise floor sf's and sinusoid levels */
|
|
#ifndef SBR_LOW_POWER
|
|
adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost);
|
|
#else
|
|
/* sqrt() will be done after the aliasing reduction to save a
|
|
* few multiplies
|
|
*/
|
|
adj->G_lim_boost[l][m] = G_lim[m] * G_boost;
|
|
#endif
|
|
adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost);
|
|
|
|
if (adj->S_index_mapped[m][l])
|
|
adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost);
|
|
else
|
|
adj->S_M_boost[l][m] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef SBR_LOW_POWER
|
|
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
|
|
{
|
|
uint8_t l, k, i;
|
|
uint8_t grouping;
|
|
|
|
for (l = 0; l < sbr->L_E[ch]; l++)
|
|
{
|
|
i = 0;
|
|
grouping = 0;
|
|
|
|
for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++)
|
|
{
|
|
if (deg[k + 1] && adj->S_mapped[k-sbr->kx][l] == 0)
|
|
{
|
|
if (grouping == 0)
|
|
{
|
|
sbr->f_group[l][i] = k;
|
|
grouping = 1;
|
|
i++;
|
|
}
|
|
} else {
|
|
if (grouping)
|
|
{
|
|
if (adj->S_mapped[k-sbr->kx][l])
|
|
sbr->f_group[l][i] = k;
|
|
else
|
|
sbr->f_group[l][i] = k + 1;
|
|
grouping = 0;
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (grouping)
|
|
{
|
|
sbr->f_group[l][i] = sbr->kx + sbr->M;
|
|
i++;
|
|
}
|
|
|
|
sbr->N_G[l] = (uint8_t)(i >> 1);
|
|
}
|
|
}
|
|
|
|
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
|
|
{
|
|
uint8_t l, k, m;
|
|
real_t E_total, E_total_est, G_target, acc;
|
|
|
|
for (l = 0; l < sbr->L_E[ch]; l++)
|
|
{
|
|
for (k = 0; k < sbr->N_G[l]; k++)
|
|
{
|
|
E_total_est = E_total = 0;
|
|
|
|
for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
|
|
{
|
|
/* E_curr: integer */
|
|
/* G_lim_boost: fixed point */
|
|
/* E_total_est: integer */
|
|
/* E_total: integer */
|
|
E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
|
|
E_total += MUL(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
|
|
}
|
|
|
|
/* G_target: fixed point */
|
|
if ((E_total_est + EPS) == 0)
|
|
G_target = 0;
|
|
else
|
|
G_target = E_total / (E_total_est + EPS);
|
|
acc = 0;
|
|
|
|
for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
|
|
{
|
|
real_t alpha;
|
|
|
|
/* alpha: fixed point */
|
|
if (m < sbr->kx + sbr->M - 1)
|
|
{
|
|
alpha = max(deg[m], deg[m + 1]);
|
|
} else {
|
|
alpha = deg[m];
|
|
}
|
|
|
|
adj->G_lim_boost[l][m-sbr->kx] = MUL(alpha, G_target) +
|
|
MUL((REAL_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
|
|
|
|
/* acc: integer */
|
|
acc += MUL(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
|
|
}
|
|
|
|
/* acc: fixed point */
|
|
if (acc + EPS == 0)
|
|
acc = 0;
|
|
else
|
|
acc = E_total / (acc + EPS);
|
|
|
|
for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
|
|
{
|
|
adj->G_lim_boost[l][m-sbr->kx] = MUL(acc, adj->G_lim_boost[l][m-sbr->kx]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (l = 0; l < sbr->L_E[ch]; l++)
|
|
{
|
|
for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
|
|
{
|
|
for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
|
|
m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
|
|
{
|
|
adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
|
|
qmf_t *Xsbr, uint8_t ch)
|
|
{
|
|
static real_t h_smooth[] = {
|
|
COEF_CONST(0.03183050093751), COEF_CONST(0.11516383427084),
|
|
COEF_CONST(0.21816949906249), COEF_CONST(0.30150283239582),
|
|
COEF_CONST(0.33333333333333)
|
|
};
|
|
static int8_t phi_re[] = { 1, 0, -1, 0 };
|
|
static int8_t phi_im[] = { 0, 1, 0, -1 };
|
|
|
|
uint8_t m, l, i, n;
|
|
uint16_t fIndexNoise = 0;
|
|
uint8_t fIndexSine = 0;
|
|
uint8_t assembly_reset = 0;
|
|
real_t *temp;
|
|
|
|
real_t G_filt, Q_filt;
|
|
|
|
uint8_t h_SL;
|
|
|
|
|
|
if (sbr->Reset == 1)
|
|
{
|
|
assembly_reset = 1;
|
|
fIndexNoise = 0;
|
|
} else {
|
|
fIndexNoise = sbr->index_noise_prev[ch];
|
|
}
|
|
fIndexSine = sbr->psi_is_prev[ch];
|
|
|
|
|
|
for (l = 0; l < sbr->L_E[ch]; l++)
|
|
{
|
|
uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
|
|
|
|
#ifdef SBR_LOW_POWER
|
|
h_SL = 0;
|
|
#else
|
|
h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
|
|
h_SL = (no_noise ? 0 : h_SL);
|
|
#endif
|
|
|
|
if (assembly_reset)
|
|
{
|
|
for (n = 0; n < 4; n++)
|
|
{
|
|
memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
|
|
memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
|
|
}
|
|
assembly_reset = 0;
|
|
}
|
|
|
|
|
|
for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
|
|
{
|
|
#ifdef SBR_LOW_POWER
|
|
uint8_t i_min1, i_plus1;
|
|
uint8_t sinusoids = 0;
|
|
#endif
|
|
|
|
memcpy(sbr->G_temp_prev[ch][4], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
|
|
memcpy(sbr->Q_temp_prev[ch][4], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
|
|
|
|
for (m = 0; m < sbr->M; m++)
|
|
{
|
|
uint8_t j;
|
|
qmf_t psi;
|
|
|
|
|
|
G_filt = 0;
|
|
Q_filt = 0;
|
|
j = 0;
|
|
|
|
if (h_SL != 0)
|
|
{
|
|
for (n = 0; n <= 4; n++)
|
|
{
|
|
G_filt += MUL_R_C(sbr->G_temp_prev[ch][n][m], h_smooth[j]);
|
|
Q_filt += MUL_R_C(sbr->Q_temp_prev[ch][n][m], h_smooth[j]);
|
|
j++;
|
|
}
|
|
} else {
|
|
G_filt = sbr->G_temp_prev[ch][4][m];
|
|
Q_filt = sbr->Q_temp_prev[ch][4][m];
|
|
}
|
|
|
|
Q_filt = (adj->S_M_boost[l][m] != 0 || no_noise) ? 0 : Q_filt;
|
|
|
|
/* add noise to the output */
|
|
fIndexNoise = (fIndexNoise + 1) & 511;
|
|
|
|
/* the smoothed gain values are applied to Xsbr */
|
|
/* V is defined, not calculated */
|
|
QMF_RE(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx]) = MUL(G_filt, QMF_RE(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx]))
|
|
+ MUL_R_C(Q_filt, RE(V[fIndexNoise]));
|
|
if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
|
|
QMF_RE(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx]) = 16428320;
|
|
#ifndef SBR_LOW_POWER
|
|
QMF_IM(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx]) = MUL(G_filt, QMF_IM(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx]))
|
|
+ MUL_R_C(Q_filt, IM(V[fIndexNoise]));
|
|
#endif
|
|
|
|
|
|
if (adj->S_index_mapped[m][l])
|
|
{
|
|
int8_t rev = ((m + sbr->kx) & 1) ? -1 : 1;
|
|
QMF_RE(psi) = MUL(adj->S_M_boost[l][m], phi_re[fIndexSine]);
|
|
QMF_RE(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx]) += QMF_RE(psi);
|
|
|
|
#ifndef SBR_LOW_POWER
|
|
QMF_IM(psi) = rev * MUL(adj->S_M_boost[l][m], phi_im[fIndexSine]);
|
|
QMF_IM(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx]) += QMF_IM(psi);
|
|
#else
|
|
i_min1 = (fIndexSine - 1) & 3;
|
|
i_plus1 = (fIndexSine + 1) & 3;
|
|
|
|
if (m == 0)
|
|
{
|
|
QMF_RE(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx - 1]) -=
|
|
(rev * MUL_R_C(MUL(adj->S_M_boost[l][0], phi_re[i_plus1]), COEF_CONST(0.00815)));
|
|
QMF_RE(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx]) -=
|
|
(rev * MUL_R_C(MUL(adj->S_M_boost[l][1], phi_re[i_plus1]), COEF_CONST(0.00815)));
|
|
}
|
|
if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16))
|
|
{
|
|
QMF_RE(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx]) -=
|
|
(rev * MUL_R_C(MUL(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815)));
|
|
QMF_RE(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx]) -=
|
|
(rev * MUL_R_C(MUL(adj->S_M_boost[l][m + 1], phi_re[i_plus1]), COEF_CONST(0.00815)));
|
|
}
|
|
if ((m == sbr->M - 1) && (sinusoids < 16) && (m + sbr->kx + 1 < 63))
|
|
{
|
|
QMF_RE(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx]) -=
|
|
(rev * MUL_R_C(MUL(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815)));
|
|
QMF_RE(Xsbr[((i + sbr->tHFAdj)<<6) + m+sbr->kx + 1]) -=
|
|
(rev * MUL_R_C(MUL(adj->S_M_boost[l][m + 1], phi_re[i_min1]), COEF_CONST(0.00815)));
|
|
}
|
|
|
|
sinusoids++;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
fIndexSine = (fIndexSine + 1) & 3;
|
|
|
|
|
|
temp = sbr->G_temp_prev[ch][0];
|
|
for (n = 0; n < 4; n++)
|
|
sbr->G_temp_prev[ch][n] = sbr->G_temp_prev[ch][n+1];
|
|
sbr->G_temp_prev[ch][4] = temp;
|
|
|
|
temp = sbr->Q_temp_prev[ch][0];
|
|
for (n = 0; n < 4; n++)
|
|
sbr->Q_temp_prev[ch][n] = sbr->Q_temp_prev[ch][n+1];
|
|
sbr->Q_temp_prev[ch][4] = temp;
|
|
}
|
|
}
|
|
|
|
sbr->index_noise_prev[ch] = fIndexNoise;
|
|
sbr->psi_is_prev[ch] = fIndexSine;
|
|
}
|
|
|
|
#endif
|