mirror of
https://github.com/mpv-player/mpv
synced 2025-01-18 13:14:36 +00:00
5f5e40c155
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@14728 b3059339-0415-0410-9bf9-f77b7e298cf2
766 lines
25 KiB
C
766 lines
25 KiB
C
/*
|
|
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
|
|
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
|
|
**
|
|
** This program is free software; you can redistribute it and/or modify
|
|
** it under the terms of the GNU General Public License as published by
|
|
** the Free Software Foundation; either version 2 of the License, or
|
|
** (at your option) any later version.
|
|
**
|
|
** This program is distributed in the hope that it will be useful,
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
** GNU General Public License for more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public License
|
|
** along with this program; if not, write to the Free Software
|
|
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
**
|
|
** Any non-GPL usage of this software or parts of this software is strictly
|
|
** forbidden.
|
|
**
|
|
** Commercial non-GPL licensing of this software is possible.
|
|
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
|
|
**
|
|
** $Id: filtbank.c,v 1.38 2004/06/30 12:45:56 menno Exp $
|
|
**/
|
|
|
|
#include "common.h"
|
|
#include "structs.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#ifdef _WIN32_WCE
|
|
#define assert(x)
|
|
#else
|
|
#include <assert.h>
|
|
#endif
|
|
|
|
#include "filtbank.h"
|
|
#include "decoder.h"
|
|
#include "syntax.h"
|
|
#include "kbd_win.h"
|
|
#include "sine_win.h"
|
|
#include "mdct.h"
|
|
|
|
|
|
fb_info *filter_bank_init(uint16_t frame_len)
|
|
{
|
|
uint16_t nshort = frame_len/8;
|
|
#ifdef LD_DEC
|
|
uint16_t frame_len_ld = frame_len/2;
|
|
#endif
|
|
|
|
fb_info *fb = (fb_info*)faad_malloc(sizeof(fb_info));
|
|
memset(fb, 0, sizeof(fb_info));
|
|
|
|
/* normal */
|
|
fb->mdct256 = faad_mdct_init(2*nshort);
|
|
fb->mdct2048 = faad_mdct_init(2*frame_len);
|
|
#ifdef LD_DEC
|
|
/* LD */
|
|
fb->mdct1024 = faad_mdct_init(2*frame_len_ld);
|
|
#endif
|
|
|
|
#ifdef ALLOW_SMALL_FRAMELENGTH
|
|
if (frame_len == 1024)
|
|
{
|
|
#endif
|
|
fb->long_window[0] = sine_long_1024;
|
|
fb->short_window[0] = sine_short_128;
|
|
fb->long_window[1] = kbd_long_1024;
|
|
fb->short_window[1] = kbd_short_128;
|
|
#ifdef LD_DEC
|
|
fb->ld_window[0] = sine_mid_512;
|
|
fb->ld_window[1] = ld_mid_512;
|
|
#endif
|
|
#ifdef ALLOW_SMALL_FRAMELENGTH
|
|
} else /* (frame_len == 960) */ {
|
|
fb->long_window[0] = sine_long_960;
|
|
fb->short_window[0] = sine_short_120;
|
|
fb->long_window[1] = kbd_long_960;
|
|
fb->short_window[1] = kbd_short_120;
|
|
#ifdef LD_DEC
|
|
fb->ld_window[0] = sine_mid_480;
|
|
fb->ld_window[1] = ld_mid_480;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_SSE
|
|
if (cpu_has_sse())
|
|
{
|
|
fb->if_func = ifilter_bank_sse;
|
|
} else {
|
|
fb->if_func = ifilter_bank;
|
|
}
|
|
#endif
|
|
|
|
return fb;
|
|
}
|
|
|
|
void filter_bank_end(fb_info *fb)
|
|
{
|
|
if (fb != NULL)
|
|
{
|
|
#ifdef PROFILE
|
|
printf("FB: %I64d cycles\n", fb->cycles);
|
|
#endif
|
|
|
|
faad_mdct_end(fb->mdct256);
|
|
faad_mdct_end(fb->mdct2048);
|
|
#ifdef LD_DEC
|
|
faad_mdct_end(fb->mdct1024);
|
|
#endif
|
|
|
|
faad_free(fb);
|
|
}
|
|
}
|
|
|
|
static INLINE void imdct_long(fb_info *fb, real_t *in_data, real_t *out_data, uint16_t len)
|
|
{
|
|
#ifdef LD_DEC
|
|
mdct_info *mdct = NULL;
|
|
|
|
switch (len)
|
|
{
|
|
case 2048:
|
|
case 1920:
|
|
mdct = fb->mdct2048;
|
|
break;
|
|
case 1024:
|
|
case 960:
|
|
mdct = fb->mdct1024;
|
|
break;
|
|
}
|
|
|
|
faad_imdct(mdct, in_data, out_data);
|
|
#else
|
|
faad_imdct(fb->mdct2048, in_data, out_data);
|
|
#endif
|
|
}
|
|
|
|
#ifdef USE_SSE
|
|
static INLINE void imdct_long_sse(fb_info *fb, real_t *in_data, real_t *out_data, uint16_t len)
|
|
{
|
|
#ifdef LD_DEC
|
|
mdct_info *mdct = NULL;
|
|
|
|
switch (len)
|
|
{
|
|
case 2048:
|
|
case 1920:
|
|
mdct = fb->mdct2048;
|
|
break;
|
|
case 1024:
|
|
case 960:
|
|
mdct = fb->mdct1024;
|
|
break;
|
|
}
|
|
|
|
faad_imdct_sse(mdct, in_data, out_data);
|
|
#else
|
|
faad_imdct_sse(fb->mdct2048, in_data, out_data);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef LTP_DEC
|
|
static INLINE void mdct(fb_info *fb, real_t *in_data, real_t *out_data, uint16_t len)
|
|
{
|
|
mdct_info *mdct = NULL;
|
|
|
|
switch (len)
|
|
{
|
|
case 2048:
|
|
case 1920:
|
|
mdct = fb->mdct2048;
|
|
break;
|
|
case 256:
|
|
case 240:
|
|
mdct = fb->mdct256;
|
|
break;
|
|
#ifdef LD_DEC
|
|
case 1024:
|
|
case 960:
|
|
mdct = fb->mdct1024;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
faad_mdct(mdct, in_data, out_data);
|
|
}
|
|
#endif
|
|
|
|
void ifilter_bank(fb_info *fb, uint8_t window_sequence, uint8_t window_shape,
|
|
uint8_t window_shape_prev, real_t *freq_in,
|
|
real_t *time_out, real_t *overlap,
|
|
uint8_t object_type, uint16_t frame_len)
|
|
{
|
|
int16_t i;
|
|
ALIGN real_t transf_buf[2*1024] = {0};
|
|
|
|
const real_t *window_long = NULL;
|
|
const real_t *window_long_prev = NULL;
|
|
const real_t *window_short = NULL;
|
|
const real_t *window_short_prev = NULL;
|
|
|
|
uint16_t nlong = frame_len;
|
|
uint16_t nshort = frame_len/8;
|
|
uint16_t trans = nshort/2;
|
|
|
|
uint16_t nflat_ls = (nlong-nshort)/2;
|
|
|
|
#ifdef PROFILE
|
|
int64_t count = faad_get_ts();
|
|
#endif
|
|
|
|
/* select windows of current frame and previous frame (Sine or KBD) */
|
|
#ifdef LD_DEC
|
|
if (object_type == LD)
|
|
{
|
|
window_long = fb->ld_window[window_shape];
|
|
window_long_prev = fb->ld_window[window_shape_prev];
|
|
} else {
|
|
#endif
|
|
window_long = fb->long_window[window_shape];
|
|
window_long_prev = fb->long_window[window_shape_prev];
|
|
window_short = fb->short_window[window_shape];
|
|
window_short_prev = fb->short_window[window_shape_prev];
|
|
#ifdef LD_DEC
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
for (i = 0; i < 1024; i++)
|
|
{
|
|
printf("%d\n", freq_in[i]);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
printf("%d %d\n", window_sequence, window_shape);
|
|
#endif
|
|
|
|
switch (window_sequence)
|
|
{
|
|
case ONLY_LONG_SEQUENCE:
|
|
/* perform iMDCT */
|
|
imdct_long(fb, freq_in, transf_buf, 2*nlong);
|
|
|
|
/* add second half output of previous frame to windowed output of current frame */
|
|
for (i = 0; i < nlong; i+=4)
|
|
{
|
|
time_out[i] = overlap[i] + MUL_F(transf_buf[i],window_long_prev[i]);
|
|
time_out[i+1] = overlap[i+1] + MUL_F(transf_buf[i+1],window_long_prev[i+1]);
|
|
time_out[i+2] = overlap[i+2] + MUL_F(transf_buf[i+2],window_long_prev[i+2]);
|
|
time_out[i+3] = overlap[i+3] + MUL_F(transf_buf[i+3],window_long_prev[i+3]);
|
|
}
|
|
|
|
/* window the second half and save as overlap for next frame */
|
|
for (i = 0; i < nlong; i+=4)
|
|
{
|
|
overlap[i] = MUL_F(transf_buf[nlong+i],window_long[nlong-1-i]);
|
|
overlap[i+1] = MUL_F(transf_buf[nlong+i+1],window_long[nlong-2-i]);
|
|
overlap[i+2] = MUL_F(transf_buf[nlong+i+2],window_long[nlong-3-i]);
|
|
overlap[i+3] = MUL_F(transf_buf[nlong+i+3],window_long[nlong-4-i]);
|
|
}
|
|
break;
|
|
|
|
case LONG_START_SEQUENCE:
|
|
/* perform iMDCT */
|
|
imdct_long(fb, freq_in, transf_buf, 2*nlong);
|
|
|
|
/* add second half output of previous frame to windowed output of current frame */
|
|
for (i = 0; i < nlong; i+=4)
|
|
{
|
|
time_out[i] = overlap[i] + MUL_F(transf_buf[i],window_long_prev[i]);
|
|
time_out[i+1] = overlap[i+1] + MUL_F(transf_buf[i+1],window_long_prev[i+1]);
|
|
time_out[i+2] = overlap[i+2] + MUL_F(transf_buf[i+2],window_long_prev[i+2]);
|
|
time_out[i+3] = overlap[i+3] + MUL_F(transf_buf[i+3],window_long_prev[i+3]);
|
|
}
|
|
|
|
/* window the second half and save as overlap for next frame */
|
|
/* construct second half window using padding with 1's and 0's */
|
|
for (i = 0; i < nflat_ls; i++)
|
|
overlap[i] = transf_buf[nlong+i];
|
|
for (i = 0; i < nshort; i++)
|
|
overlap[nflat_ls+i] = MUL_F(transf_buf[nlong+nflat_ls+i],window_short[nshort-i-1]);
|
|
for (i = 0; i < nflat_ls; i++)
|
|
overlap[nflat_ls+nshort+i] = 0;
|
|
break;
|
|
|
|
case EIGHT_SHORT_SEQUENCE:
|
|
/* perform iMDCT for each short block */
|
|
faad_imdct(fb->mdct256, freq_in+0*nshort, transf_buf+2*nshort*0);
|
|
faad_imdct(fb->mdct256, freq_in+1*nshort, transf_buf+2*nshort*1);
|
|
faad_imdct(fb->mdct256, freq_in+2*nshort, transf_buf+2*nshort*2);
|
|
faad_imdct(fb->mdct256, freq_in+3*nshort, transf_buf+2*nshort*3);
|
|
faad_imdct(fb->mdct256, freq_in+4*nshort, transf_buf+2*nshort*4);
|
|
faad_imdct(fb->mdct256, freq_in+5*nshort, transf_buf+2*nshort*5);
|
|
faad_imdct(fb->mdct256, freq_in+6*nshort, transf_buf+2*nshort*6);
|
|
faad_imdct(fb->mdct256, freq_in+7*nshort, transf_buf+2*nshort*7);
|
|
|
|
/* add second half output of previous frame to windowed output of current frame */
|
|
for (i = 0; i < nflat_ls; i++)
|
|
time_out[i] = overlap[i];
|
|
for(i = 0; i < nshort; i++)
|
|
{
|
|
time_out[nflat_ls+ i] = overlap[nflat_ls+ i] + MUL_F(transf_buf[nshort*0+i],window_short_prev[i]);
|
|
time_out[nflat_ls+1*nshort+i] = overlap[nflat_ls+nshort*1+i] + MUL_F(transf_buf[nshort*1+i],window_short[nshort-1-i]) + MUL_F(transf_buf[nshort*2+i],window_short[i]);
|
|
time_out[nflat_ls+2*nshort+i] = overlap[nflat_ls+nshort*2+i] + MUL_F(transf_buf[nshort*3+i],window_short[nshort-1-i]) + MUL_F(transf_buf[nshort*4+i],window_short[i]);
|
|
time_out[nflat_ls+3*nshort+i] = overlap[nflat_ls+nshort*3+i] + MUL_F(transf_buf[nshort*5+i],window_short[nshort-1-i]) + MUL_F(transf_buf[nshort*6+i],window_short[i]);
|
|
if (i < trans)
|
|
time_out[nflat_ls+4*nshort+i] = overlap[nflat_ls+nshort*4+i] + MUL_F(transf_buf[nshort*7+i],window_short[nshort-1-i]) + MUL_F(transf_buf[nshort*8+i],window_short[i]);
|
|
}
|
|
|
|
/* window the second half and save as overlap for next frame */
|
|
for(i = 0; i < nshort; i++)
|
|
{
|
|
if (i >= trans)
|
|
overlap[nflat_ls+4*nshort+i-nlong] = MUL_F(transf_buf[nshort*7+i],window_short[nshort-1-i]) + MUL_F(transf_buf[nshort*8+i],window_short[i]);
|
|
overlap[nflat_ls+5*nshort+i-nlong] = MUL_F(transf_buf[nshort*9+i],window_short[nshort-1-i]) + MUL_F(transf_buf[nshort*10+i],window_short[i]);
|
|
overlap[nflat_ls+6*nshort+i-nlong] = MUL_F(transf_buf[nshort*11+i],window_short[nshort-1-i]) + MUL_F(transf_buf[nshort*12+i],window_short[i]);
|
|
overlap[nflat_ls+7*nshort+i-nlong] = MUL_F(transf_buf[nshort*13+i],window_short[nshort-1-i]) + MUL_F(transf_buf[nshort*14+i],window_short[i]);
|
|
overlap[nflat_ls+8*nshort+i-nlong] = MUL_F(transf_buf[nshort*15+i],window_short[nshort-1-i]);
|
|
}
|
|
for (i = 0; i < nflat_ls; i++)
|
|
overlap[nflat_ls+nshort+i] = 0;
|
|
break;
|
|
|
|
case LONG_STOP_SEQUENCE:
|
|
/* perform iMDCT */
|
|
imdct_long(fb, freq_in, transf_buf, 2*nlong);
|
|
|
|
/* add second half output of previous frame to windowed output of current frame */
|
|
/* construct first half window using padding with 1's and 0's */
|
|
for (i = 0; i < nflat_ls; i++)
|
|
time_out[i] = overlap[i];
|
|
for (i = 0; i < nshort; i++)
|
|
time_out[nflat_ls+i] = overlap[nflat_ls+i] + MUL_F(transf_buf[nflat_ls+i],window_short_prev[i]);
|
|
for (i = 0; i < nflat_ls; i++)
|
|
time_out[nflat_ls+nshort+i] = overlap[nflat_ls+nshort+i] + transf_buf[nflat_ls+nshort+i];
|
|
|
|
/* window the second half and save as overlap for next frame */
|
|
for (i = 0; i < nlong; i++)
|
|
overlap[i] = MUL_F(transf_buf[nlong+i],window_long[nlong-1-i]);
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
for (i = 0; i < 1024; i++)
|
|
{
|
|
//printf("%d\n", time_out[i]);
|
|
printf("0x%.8X\n", time_out[i]);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef PROFILE
|
|
count = faad_get_ts() - count;
|
|
fb->cycles += count;
|
|
#endif
|
|
}
|
|
|
|
#ifdef USE_SSE
|
|
void ifilter_bank_sse(fb_info *fb, uint8_t window_sequence, uint8_t window_shape,
|
|
uint8_t window_shape_prev, real_t *freq_in,
|
|
real_t *time_out, uint8_t object_type, uint16_t frame_len)
|
|
{
|
|
int16_t i;
|
|
ALIGN real_t transf_buf[2*1024] = {0};
|
|
|
|
const real_t *window_long = NULL;
|
|
const real_t *window_long_prev = NULL;
|
|
const real_t *window_short = NULL;
|
|
const real_t *window_short_prev = NULL;
|
|
|
|
uint16_t nlong = frame_len;
|
|
uint16_t nshort = frame_len/8;
|
|
uint16_t trans = nshort/2;
|
|
|
|
uint16_t nflat_ls = (nlong-nshort)/2;
|
|
|
|
#ifdef PROFILE
|
|
int64_t count = faad_get_ts();
|
|
#endif
|
|
|
|
#ifdef LD_DEC
|
|
if (object_type == LD)
|
|
{
|
|
window_long = fb->ld_window[window_shape];
|
|
window_long_prev = fb->ld_window[window_shape_prev];
|
|
} else {
|
|
#endif
|
|
window_long = fb->long_window[window_shape];
|
|
window_long_prev = fb->long_window[window_shape_prev];
|
|
window_short = fb->short_window[window_shape];
|
|
window_short_prev = fb->short_window[window_shape_prev];
|
|
#ifdef LD_DEC
|
|
}
|
|
#endif
|
|
|
|
switch (window_sequence)
|
|
{
|
|
case ONLY_LONG_SEQUENCE:
|
|
imdct_long_sse(fb, freq_in, transf_buf, 2*nlong);
|
|
for (i = 0; i < nlong; i+=4)
|
|
{
|
|
__m128 m1, m2, m3, m4, m5, m6, m7, m8;
|
|
|
|
m1 = _mm_load_ps(&transf_buf[i]);
|
|
m2 = _mm_load_ps(&window_long_prev[i]);
|
|
m6 = _mm_load_ps(&window_long[nlong-4-i]);
|
|
m3 = _mm_load_ps(&time_out[nlong+i]);
|
|
m5 = _mm_load_ps(&transf_buf[nlong+i]);
|
|
|
|
m4 = _mm_mul_ps(m1, m2);
|
|
m7 = _mm_shuffle_ps(m6, m6, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m4 = _mm_add_ps(m4, m3);
|
|
m8 = _mm_mul_ps(m5, m7);
|
|
|
|
_mm_store_ps(&time_out[i], m4);
|
|
_mm_store_ps(&time_out[nlong+i], m8);
|
|
}
|
|
break;
|
|
|
|
case LONG_START_SEQUENCE:
|
|
imdct_long_sse(fb, freq_in, transf_buf, 2*nlong);
|
|
for (i = 0; i < nlong; i+=4)
|
|
{
|
|
__m128 m1 = _mm_load_ps(&transf_buf[i]);
|
|
__m128 m2 = _mm_load_ps(&window_long_prev[i]);
|
|
__m128 m3 = _mm_load_ps(&time_out[nlong+i]);
|
|
|
|
__m128 m4 = _mm_mul_ps(m1, m2);
|
|
m4 = _mm_add_ps(m4, m3);
|
|
|
|
_mm_store_ps(&time_out[i], m4);
|
|
}
|
|
for (i = 0; i < nflat_ls; i+=4)
|
|
{
|
|
__m128 m1 = _mm_load_ps(&transf_buf[nlong+i]);
|
|
_mm_store_ps(&time_out[nlong+i], m1);
|
|
}
|
|
for (i = 0; i < nshort; i+=4)
|
|
{
|
|
__m128 m1 = _mm_load_ps(&transf_buf[nlong+nflat_ls+i]);
|
|
__m128 m2 = _mm_load_ps(&window_short[nshort-4-i]);
|
|
__m128 m3, m4;
|
|
|
|
m3 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m4 = _mm_mul_ps(m1, m3);
|
|
|
|
_mm_store_ps(&time_out[nlong+nflat_ls+i], m4);
|
|
}
|
|
for (i = 0; i < nflat_ls; i+=4)
|
|
{
|
|
__m128 m1 = _mm_setzero_ps();
|
|
_mm_store_ps(&time_out[nlong+nflat_ls+nshort+i], m1);
|
|
}
|
|
break;
|
|
|
|
case EIGHT_SHORT_SEQUENCE:
|
|
faad_imdct_sse(fb->mdct256, &freq_in[0*nshort], &transf_buf[2*nshort*0]);
|
|
faad_imdct_sse(fb->mdct256, &freq_in[1*nshort], &transf_buf[2*nshort*1]);
|
|
faad_imdct_sse(fb->mdct256, &freq_in[2*nshort], &transf_buf[2*nshort*2]);
|
|
faad_imdct_sse(fb->mdct256, &freq_in[3*nshort], &transf_buf[2*nshort*3]);
|
|
faad_imdct_sse(fb->mdct256, &freq_in[4*nshort], &transf_buf[2*nshort*4]);
|
|
faad_imdct_sse(fb->mdct256, &freq_in[5*nshort], &transf_buf[2*nshort*5]);
|
|
faad_imdct_sse(fb->mdct256, &freq_in[6*nshort], &transf_buf[2*nshort*6]);
|
|
faad_imdct_sse(fb->mdct256, &freq_in[7*nshort], &transf_buf[2*nshort*7]);
|
|
for (i = 0; i < nflat_ls; i+=4)
|
|
{
|
|
__m128 m1 = _mm_load_ps(&time_out[nlong+i]);
|
|
_mm_store_ps(&time_out[i], m1);
|
|
}
|
|
for (i = 0; i < nshort; i+=4)
|
|
{
|
|
__m128 m1 = _mm_load_ps(&transf_buf[nshort*0+i]);
|
|
__m128 m2 = _mm_load_ps(&window_short_prev[i]);
|
|
__m128 m3 = _mm_load_ps(&time_out[nlong+nflat_ls+i]);
|
|
|
|
__m128 m4 = _mm_mul_ps(m1, m2);
|
|
m4 = _mm_add_ps(m4, m3);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+i], m4);
|
|
}
|
|
for (i = 0; i < nshort; i+=4)
|
|
{
|
|
__m128 m1, m2, m3, m4, m5, m6, m7, m8;
|
|
m1 = _mm_load_ps(&transf_buf[nshort*1+i]);
|
|
m2 = _mm_load_ps(&window_short[nshort-4-i]);
|
|
m3 = _mm_load_ps(&time_out[nlong+nflat_ls+nshort*1+i]);
|
|
m6 = _mm_load_ps(&transf_buf[nshort*2+i]);
|
|
m7 = _mm_load_ps(&window_short[i]);
|
|
|
|
m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m4 = _mm_mul_ps(m1, m5);
|
|
m8 = _mm_mul_ps(m6, m7);
|
|
m4 = _mm_add_ps(m4, m3);
|
|
m4 = _mm_add_ps(m4, m8);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+1*nshort+i], m4);
|
|
}
|
|
for (i = 0; i < nshort; i+=4)
|
|
{
|
|
__m128 m1, m2, m3, m4, m5, m6, m7, m8;
|
|
m1 = _mm_load_ps(&transf_buf[nshort*3+i]);
|
|
m2 = _mm_load_ps(&window_short[nshort-4-i]);
|
|
m3 = _mm_load_ps(&time_out[nlong+nflat_ls+nshort*2+i]);
|
|
m6 = _mm_load_ps(&transf_buf[nshort*4+i]);
|
|
m7 = _mm_load_ps(&window_short[i]);
|
|
|
|
m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m4 = _mm_mul_ps(m1, m5);
|
|
m8 = _mm_mul_ps(m6, m7);
|
|
m4 = _mm_add_ps(m4, m3);
|
|
m4 = _mm_add_ps(m4, m8);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+2*nshort+i], m4);
|
|
}
|
|
for (i = 0; i < nshort; i+=4)
|
|
{
|
|
__m128 m1, m2, m3, m4, m5, m6, m7, m8;
|
|
m1 = _mm_load_ps(&transf_buf[nshort*5+i]);
|
|
m2 = _mm_load_ps(&window_short[nshort-4-i]);
|
|
m3 = _mm_load_ps(&time_out[nlong+nflat_ls+nshort*3+i]);
|
|
m6 = _mm_load_ps(&transf_buf[nshort*6+i]);
|
|
m7 = _mm_load_ps(&window_short[i]);
|
|
|
|
m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m4 = _mm_mul_ps(m1, m5);
|
|
m8 = _mm_mul_ps(m6, m7);
|
|
m4 = _mm_add_ps(m4, m3);
|
|
m4 = _mm_add_ps(m4, m8);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+3*nshort+i], m4);
|
|
}
|
|
for(i = 0; i < trans; i+=4)
|
|
{
|
|
__m128 m1, m2, m3, m4, m5, m6, m7, m8;
|
|
m1 = _mm_load_ps(&transf_buf[nshort*7+i]);
|
|
m2 = _mm_load_ps(&window_short[nshort-4-i]);
|
|
m3 = _mm_load_ps(&time_out[nlong+nflat_ls+nshort*4+i]);
|
|
m6 = _mm_load_ps(&transf_buf[nshort*8+i]);
|
|
m7 = _mm_load_ps(&window_short[i]);
|
|
|
|
m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m4 = _mm_mul_ps(m1, m5);
|
|
m8 = _mm_mul_ps(m6, m7);
|
|
m4 = _mm_add_ps(m4, m3);
|
|
m4 = _mm_add_ps(m4, m8);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+4*nshort+i], m4);
|
|
}
|
|
for (i = trans; i < nshort; i+=4)
|
|
{
|
|
__m128 m1, m2, m3, m4, m5, m6, m7, m8;
|
|
m1 = _mm_load_ps(&transf_buf[nshort*7+i]);
|
|
m2 = _mm_load_ps(&window_short[nshort-4-i]);
|
|
m6 = _mm_load_ps(&transf_buf[nshort*8+i]);
|
|
m7 = _mm_load_ps(&window_short[i]);
|
|
|
|
m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m4 = _mm_mul_ps(m1, m5);
|
|
m8 = _mm_mul_ps(m6, m7);
|
|
m3 = _mm_add_ps(m4, m8);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+4*nshort+i], m3);
|
|
}
|
|
for (i = 0; i < nshort; i+=4)
|
|
{
|
|
__m128 m1, m2, m3, m4, m5, m6, m7, m8;
|
|
m1 = _mm_load_ps(&transf_buf[nshort*9+i]);
|
|
m2 = _mm_load_ps(&window_short[nshort-4-i]);
|
|
m6 = _mm_load_ps(&transf_buf[nshort*10+i]);
|
|
m7 = _mm_load_ps(&window_short[i]);
|
|
|
|
m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m4 = _mm_mul_ps(m1, m5);
|
|
m8 = _mm_mul_ps(m6, m7);
|
|
m3 = _mm_add_ps(m4, m8);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+5*nshort+i], m3);
|
|
}
|
|
for (i = 0; i < nshort; i+=4)
|
|
{
|
|
__m128 m1, m2, m3, m4, m5, m6, m7, m8;
|
|
m1 = _mm_load_ps(&transf_buf[nshort*11+i]);
|
|
m2 = _mm_load_ps(&window_short[nshort-4-i]);
|
|
m6 = _mm_load_ps(&transf_buf[nshort*12+i]);
|
|
m7 = _mm_load_ps(&window_short[i]);
|
|
|
|
m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m4 = _mm_mul_ps(m1, m5);
|
|
m8 = _mm_mul_ps(m6, m7);
|
|
m3 = _mm_add_ps(m4, m8);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+6*nshort+i], m3);
|
|
}
|
|
for (i = 0; i < nshort; i+=4)
|
|
{
|
|
__m128 m1, m2, m3, m4, m5, m6, m7, m8;
|
|
m1 = _mm_load_ps(&transf_buf[nshort*13+i]);
|
|
m2 = _mm_load_ps(&window_short[nshort-4-i]);
|
|
m6 = _mm_load_ps(&transf_buf[nshort*14+i]);
|
|
m7 = _mm_load_ps(&window_short[i]);
|
|
|
|
m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m4 = _mm_mul_ps(m1, m5);
|
|
m8 = _mm_mul_ps(m6, m7);
|
|
m3 = _mm_add_ps(m4, m8);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+7*nshort+i], m3);
|
|
}
|
|
for (i = 0; i < nshort; i+=4)
|
|
{
|
|
__m128 m1, m2, m3, m5;
|
|
m1 = _mm_load_ps(&transf_buf[nshort*15+i]);
|
|
m2 = _mm_load_ps(&window_short[nshort-4-i]);
|
|
|
|
m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m3 = _mm_mul_ps(m1, m5);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+8*nshort+i], m3);
|
|
}
|
|
for (i = 0; i < nflat_ls; i+=4)
|
|
{
|
|
__m128 m1 = _mm_setzero_ps();
|
|
_mm_store_ps(&time_out[nlong+nflat_ls+nshort+i], m1);
|
|
}
|
|
break;
|
|
|
|
case LONG_STOP_SEQUENCE:
|
|
imdct_long_sse(fb, freq_in, transf_buf, 2*nlong);
|
|
for (i = 0; i < nflat_ls; i+=4)
|
|
{
|
|
__m128 m1 = _mm_load_ps(&time_out[nlong+i]);
|
|
_mm_store_ps(&time_out[i], m1);
|
|
}
|
|
for (i = 0; i < nshort; i+=4)
|
|
{
|
|
__m128 m1 = _mm_load_ps(&transf_buf[nflat_ls+i]);
|
|
__m128 m2 = _mm_load_ps(&window_short_prev[i]);
|
|
__m128 m3 = _mm_load_ps(&time_out[nlong+nflat_ls+i]);
|
|
|
|
__m128 m4 = _mm_mul_ps(m1, m2);
|
|
m4 = _mm_add_ps(m4, m3);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+i], m4);
|
|
}
|
|
for (i = 0; i < nflat_ls; i+=4)
|
|
{
|
|
__m128 m1 = _mm_load_ps(&transf_buf[nflat_ls+nshort+i]);
|
|
__m128 m2 = _mm_load_ps(&time_out[nlong+nflat_ls+nshort+i]);
|
|
|
|
__m128 m3 = _mm_add_ps(m1, m2);
|
|
|
|
_mm_store_ps(&time_out[nflat_ls+nshort+i], m3);
|
|
}
|
|
for (i = 0; i < nlong; i+=4)
|
|
{
|
|
__m128 m1 = _mm_load_ps(&transf_buf[nlong+i]);
|
|
__m128 m2 = _mm_load_ps(&window_long[nlong-4-i]);
|
|
__m128 m3, m4;
|
|
|
|
m3 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
m4 = _mm_mul_ps(m1, m3);
|
|
|
|
_mm_store_ps(&time_out[nlong+i], m4);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifdef PROFILE
|
|
count = faad_get_ts() - count;
|
|
fb->cycles += count;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef LTP_DEC
|
|
/* only works for LTP -> no overlapping, no short blocks */
|
|
void filter_bank_ltp(fb_info *fb, uint8_t window_sequence, uint8_t window_shape,
|
|
uint8_t window_shape_prev, real_t *in_data, real_t *out_mdct,
|
|
uint8_t object_type, uint16_t frame_len)
|
|
{
|
|
int16_t i;
|
|
ALIGN real_t windowed_buf[2*1024] = {0};
|
|
|
|
const real_t *window_long = NULL;
|
|
const real_t *window_long_prev = NULL;
|
|
const real_t *window_short = NULL;
|
|
const real_t *window_short_prev = NULL;
|
|
|
|
uint16_t nlong = frame_len;
|
|
uint16_t nshort = frame_len/8;
|
|
uint16_t nflat_ls = (nlong-nshort)/2;
|
|
|
|
assert(window_sequence != EIGHT_SHORT_SEQUENCE);
|
|
|
|
#ifdef LD_DEC
|
|
if (object_type == LD)
|
|
{
|
|
window_long = fb->ld_window[window_shape];
|
|
window_long_prev = fb->ld_window[window_shape_prev];
|
|
} else {
|
|
#endif
|
|
window_long = fb->long_window[window_shape];
|
|
window_long_prev = fb->long_window[window_shape_prev];
|
|
window_short = fb->short_window[window_shape];
|
|
window_short_prev = fb->short_window[window_shape_prev];
|
|
#ifdef LD_DEC
|
|
}
|
|
#endif
|
|
|
|
switch(window_sequence)
|
|
{
|
|
case ONLY_LONG_SEQUENCE:
|
|
for (i = nlong-1; i >= 0; i--)
|
|
{
|
|
windowed_buf[i] = MUL_F(in_data[i], window_long_prev[i]);
|
|
windowed_buf[i+nlong] = MUL_F(in_data[i+nlong], window_long[nlong-1-i]);
|
|
}
|
|
mdct(fb, windowed_buf, out_mdct, 2*nlong);
|
|
break;
|
|
|
|
case LONG_START_SEQUENCE:
|
|
for (i = 0; i < nlong; i++)
|
|
windowed_buf[i] = MUL_F(in_data[i], window_long_prev[i]);
|
|
for (i = 0; i < nflat_ls; i++)
|
|
windowed_buf[i+nlong] = in_data[i+nlong];
|
|
for (i = 0; i < nshort; i++)
|
|
windowed_buf[i+nlong+nflat_ls] = MUL_F(in_data[i+nlong+nflat_ls], window_short[nshort-1-i]);
|
|
for (i = 0; i < nflat_ls; i++)
|
|
windowed_buf[i+nlong+nflat_ls+nshort] = 0;
|
|
mdct(fb, windowed_buf, out_mdct, 2*nlong);
|
|
break;
|
|
|
|
case LONG_STOP_SEQUENCE:
|
|
for (i = 0; i < nflat_ls; i++)
|
|
windowed_buf[i] = 0;
|
|
for (i = 0; i < nshort; i++)
|
|
windowed_buf[i+nflat_ls] = MUL_F(in_data[i+nflat_ls], window_short_prev[i]);
|
|
for (i = 0; i < nflat_ls; i++)
|
|
windowed_buf[i+nflat_ls+nshort] = in_data[i+nflat_ls+nshort];
|
|
for (i = 0; i < nlong; i++)
|
|
windowed_buf[i+nlong] = MUL_F(in_data[i+nlong], window_long[nlong-1-i]);
|
|
mdct(fb, windowed_buf, out_mdct, 2*nlong);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|