mirror of
https://github.com/mpv-player/mpv
synced 2024-12-15 11:25:10 +00:00
8ee78e87ce
problems (e.g. when using resample and equalizer filters together, see http://mplayerhq.hu/pipermail/mplayer-users/2004-December/050058.html) git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@14434 b3059339-0415-0410-9bf9-f77b7e298cf2
379 lines
10 KiB
C
379 lines
10 KiB
C
/*=============================================================================
|
|
//
|
|
// This software has been released under the terms of the GNU General Public
|
|
// license. See http://www.gnu.org/copyleft/gpl.html for details.
|
|
//
|
|
// Copyright 2002 Anders Johansson ajh@atri.curtin.edu.au
|
|
//
|
|
//=============================================================================
|
|
*/
|
|
|
|
/* This audio filter changes the sample rate. */
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "af.h"
|
|
#include "dsp.h"
|
|
|
|
/* Below definition selects the length of each poly phase component.
|
|
Valid definitions are L8 and L16, where the number denotes the
|
|
length of the filter. This definition affects the computational
|
|
complexity (see play()), the performance (see filter.h) and the
|
|
memory usage. The filterlenght is choosen to 8 if the machine is
|
|
slow and to 16 if the machine is fast and has MMX.
|
|
*/
|
|
|
|
#if !defined(HAVE_MMX) // This machine is slow
|
|
#define L8
|
|
#else
|
|
#define L16
|
|
#endif
|
|
|
|
#include "af_resample.h"
|
|
|
|
// Filtering types
|
|
#define RSMP_LIN (0<<0) // Linear interpolation
|
|
#define RSMP_INT (1<<0) // 16 bit integer
|
|
#define RSMP_FLOAT (2<<0) // 32 bit floating point
|
|
#define RSMP_MASK (3<<0)
|
|
|
|
// Defines for sloppy or exact resampling
|
|
#define FREQ_SLOPPY (0<<2)
|
|
#define FREQ_EXACT (1<<2)
|
|
#define FREQ_MASK (1<<2)
|
|
|
|
// Accuracy for linear interpolation
|
|
#define STEPACCURACY 32
|
|
|
|
// local data
|
|
typedef struct af_resample_s
|
|
{
|
|
void* w; // Current filter weights
|
|
void** xq; // Circular buffers
|
|
uint32_t xi; // Index for circular buffers
|
|
uint32_t wi; // Index for w
|
|
uint32_t i; // Number of new samples to put in x queue
|
|
uint32_t dn; // Down sampling factor
|
|
uint32_t up; // Up sampling factor
|
|
uint64_t step; // Step size for linear interpolation
|
|
uint64_t pt; // Pointer remainder for linear interpolation
|
|
int setup; // Setup parameters cmdline or through postcreate
|
|
} af_resample_t;
|
|
|
|
// Fast linear interpolation resample with modest audio quality
|
|
static int linint(af_data_t* c,af_data_t* l, af_resample_t* s)
|
|
{
|
|
uint32_t len = 0; // Number of input samples
|
|
uint32_t nch = l->nch; // Words pre transfer
|
|
uint64_t step = s->step;
|
|
int16_t* in16 = ((int16_t*)c->audio);
|
|
int16_t* out16 = ((int16_t*)l->audio);
|
|
int32_t* in32 = ((int32_t*)c->audio);
|
|
int32_t* out32 = ((int32_t*)l->audio);
|
|
uint64_t end = ((((uint64_t)c->len)/2LL)<<STEPACCURACY);
|
|
uint64_t pt = s->pt;
|
|
uint16_t tmp;
|
|
|
|
switch (nch){
|
|
case 1:
|
|
while(pt < end){
|
|
out16[len++]=in16[pt>>STEPACCURACY];
|
|
pt+=step;
|
|
}
|
|
s->pt=pt & ((1LL<<STEPACCURACY)-1);
|
|
break;
|
|
case 2:
|
|
end/=2;
|
|
while(pt < end){
|
|
out32[len++]=in32[pt>>STEPACCURACY];
|
|
pt+=step;
|
|
}
|
|
len=(len<<1);
|
|
s->pt=pt & ((1LL<<STEPACCURACY)-1);
|
|
break;
|
|
default:
|
|
end /=nch;
|
|
while(pt < end){
|
|
tmp=nch;
|
|
do {
|
|
tmp--;
|
|
out16[len+tmp]=in16[tmp+(pt>>STEPACCURACY)*nch];
|
|
} while (tmp);
|
|
len+=nch;
|
|
pt+=step;
|
|
}
|
|
s->pt=pt & ((1LL<<STEPACCURACY)-1);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/* Determine resampling type and format */
|
|
static int set_types(struct af_instance_s* af, af_data_t* data)
|
|
{
|
|
af_resample_t* s = af->setup;
|
|
int rv = AF_OK;
|
|
float rd = 0;
|
|
|
|
// Make sure this filter isn't redundant
|
|
if((af->data->rate == data->rate) || (af->data->rate == 0))
|
|
return AF_DETACH;
|
|
/* If sloppy and small resampling difference (2%) */
|
|
rd = abs((float)af->data->rate - (float)data->rate)/(float)data->rate;
|
|
if((((s->setup & FREQ_MASK) == FREQ_SLOPPY) && (rd < 0.02) &&
|
|
(data->format != (AF_FORMAT_FLOAT_NE))) ||
|
|
((s->setup & RSMP_MASK) == RSMP_LIN)){
|
|
s->setup = (s->setup & ~RSMP_MASK) | RSMP_LIN;
|
|
af->data->format = AF_FORMAT_S16_NE;
|
|
af->data->bps = 2;
|
|
af_msg(AF_MSG_VERBOSE,"[resample] Using linear interpolation. \n");
|
|
}
|
|
else{
|
|
/* If the input format is float or if float is explicitly selected
|
|
use float, otherwise use int */
|
|
if((data->format == (AF_FORMAT_FLOAT_NE)) ||
|
|
((s->setup & RSMP_MASK) == RSMP_FLOAT)){
|
|
s->setup = (s->setup & ~RSMP_MASK) | RSMP_FLOAT;
|
|
af->data->format = AF_FORMAT_FLOAT_NE;
|
|
af->data->bps = 4;
|
|
}
|
|
else{
|
|
s->setup = (s->setup & ~RSMP_MASK) | RSMP_INT;
|
|
af->data->format = AF_FORMAT_S16_NE;
|
|
af->data->bps = 2;
|
|
}
|
|
af_msg(AF_MSG_VERBOSE,"[resample] Using %s processing and %s frequecy"
|
|
" conversion.\n",
|
|
((s->setup & RSMP_MASK) == RSMP_FLOAT)?"floating point":"integer",
|
|
((s->setup & FREQ_MASK) == FREQ_SLOPPY)?"inexact":"exact");
|
|
}
|
|
|
|
if(af->data->format != data->format || af->data->bps != data->bps)
|
|
rv = AF_FALSE;
|
|
data->format = af->data->format;
|
|
data->bps = af->data->bps;
|
|
af->data->nch = data->nch;
|
|
return rv;
|
|
}
|
|
|
|
// Initialization and runtime control
|
|
static int control(struct af_instance_s* af, int cmd, void* arg)
|
|
{
|
|
switch(cmd){
|
|
case AF_CONTROL_REINIT:{
|
|
af_resample_t* s = (af_resample_t*)af->setup;
|
|
af_data_t* n = (af_data_t*)arg; // New configureation
|
|
int i,d = 0;
|
|
int rv = AF_OK;
|
|
|
|
// Free space for circular bufers
|
|
if(s->xq){
|
|
for(i=1;i<af->data->nch;i++)
|
|
if(s->xq[i])
|
|
free(s->xq[i]);
|
|
free(s->xq);
|
|
}
|
|
|
|
if(AF_DETACH == (rv = set_types(af,n)))
|
|
return AF_DETACH;
|
|
|
|
// If linear interpolation
|
|
if((s->setup & RSMP_MASK) == RSMP_LIN){
|
|
s->pt=0LL;
|
|
s->step=((uint64_t)n->rate<<STEPACCURACY)/(uint64_t)af->data->rate+1LL;
|
|
af_msg(AF_MSG_DEBUG0,"[resample] Linear interpolation step: 0x%016X.\n",
|
|
s->step);
|
|
af->mul.n = af->data->rate;
|
|
af->mul.d = n->rate;
|
|
af_frac_cancel(&af->mul);
|
|
return rv;
|
|
}
|
|
|
|
// Calculate up and down sampling factors
|
|
d=af_gcd(af->data->rate,n->rate);
|
|
|
|
// If sloppy resampling is enabled limit the upsampling factor
|
|
if(((s->setup & FREQ_MASK) == FREQ_SLOPPY) && (af->data->rate/d > 5000)){
|
|
int up=af->data->rate/2;
|
|
int dn=n->rate/2;
|
|
int m=2;
|
|
while(af->data->rate/(d*m) > 5000){
|
|
d=af_gcd(up,dn);
|
|
up/=2; dn/=2; m*=2;
|
|
}
|
|
d*=m;
|
|
}
|
|
|
|
// Create space for circular bufers
|
|
s->xq = malloc(n->nch*sizeof(void*));
|
|
for(i=0;i<n->nch;i++)
|
|
s->xq[i] = malloc(2*L*af->data->bps);
|
|
s->xi = 0;
|
|
|
|
// Check if the the design needs to be redone
|
|
if(s->up != af->data->rate/d || s->dn != n->rate/d){
|
|
float* w;
|
|
float* wt;
|
|
float fc;
|
|
int j;
|
|
s->up = af->data->rate/d;
|
|
s->dn = n->rate/d;
|
|
|
|
// Calculate cuttof frequency for filter
|
|
fc = 1/(float)(max(s->up,s->dn));
|
|
// Allocate space for polyphase filter bank and protptype filter
|
|
w = malloc(sizeof(float) * s->up *L);
|
|
if(NULL != s->w)
|
|
free(s->w);
|
|
s->w = malloc(L*s->up*af->data->bps);
|
|
|
|
// Design prototype filter type using Kaiser window with beta = 10
|
|
if(NULL == w || NULL == s->w ||
|
|
-1 == af_filter_design_fir(s->up*L, w, &fc, LP|KAISER , 10.0)){
|
|
af_msg(AF_MSG_ERROR,"[resample] Unable to design prototype filter.\n");
|
|
return AF_ERROR;
|
|
}
|
|
// Copy data from prototype to polyphase filter
|
|
wt=w;
|
|
for(j=0;j<L;j++){//Columns
|
|
for(i=0;i<s->up;i++){//Rows
|
|
if((s->setup & RSMP_MASK) == RSMP_INT){
|
|
float t=(float)s->up*32767.0*(*wt);
|
|
((int16_t*)s->w)[i*L+j] = (int16_t)((t>=0.0)?(t+0.5):(t-0.5));
|
|
}
|
|
else
|
|
((float*)s->w)[i*L+j] = (float)s->up*(*wt);
|
|
wt++;
|
|
}
|
|
}
|
|
free(w);
|
|
af_msg(AF_MSG_VERBOSE,"[resample] New filter designed up: %i "
|
|
"down: %i\n", s->up, s->dn);
|
|
}
|
|
|
|
// Set multiplier and delay
|
|
af->delay = (double)(1000*L/2)/((double)n->rate);
|
|
af->mul.n = s->up;
|
|
af->mul.d = s->dn;
|
|
return rv;
|
|
}
|
|
case AF_CONTROL_COMMAND_LINE:{
|
|
af_resample_t* s = (af_resample_t*)af->setup;
|
|
int rate=0;
|
|
int type=RSMP_INT;
|
|
int sloppy=1;
|
|
sscanf((char*)arg,"%i:%i:%i", &rate, &sloppy, &type);
|
|
s->setup = (sloppy?FREQ_SLOPPY:FREQ_EXACT) |
|
|
(clamp(type,RSMP_LIN,RSMP_FLOAT));
|
|
return af->control(af,AF_CONTROL_RESAMPLE_RATE | AF_CONTROL_SET, &rate);
|
|
}
|
|
case AF_CONTROL_POST_CREATE:
|
|
if((((af_cfg_t*)arg)->force & AF_INIT_FORMAT_MASK) == AF_INIT_FLOAT)
|
|
((af_resample_t*)af->setup)->setup = RSMP_FLOAT;
|
|
return AF_OK;
|
|
case AF_CONTROL_RESAMPLE_RATE | AF_CONTROL_SET:
|
|
// Reinit must be called after this function has been called
|
|
|
|
// Sanity check
|
|
if(((int*)arg)[0] < 8000 || ((int*)arg)[0] > 192000){
|
|
af_msg(AF_MSG_ERROR,"[resample] The output sample frequency "
|
|
"must be between 8kHz and 192kHz. Current value is %i \n",
|
|
((int*)arg)[0]);
|
|
return AF_ERROR;
|
|
}
|
|
|
|
af->data->rate=((int*)arg)[0];
|
|
af_msg(AF_MSG_VERBOSE,"[resample] Changing sample rate "
|
|
"to %iHz\n",af->data->rate);
|
|
return AF_OK;
|
|
}
|
|
return AF_UNKNOWN;
|
|
}
|
|
|
|
// Deallocate memory
|
|
static void uninit(struct af_instance_s* af)
|
|
{
|
|
if(af->data)
|
|
free(af->data);
|
|
}
|
|
|
|
// Filter data through filter
|
|
static af_data_t* play(struct af_instance_s* af, af_data_t* data)
|
|
{
|
|
int len = 0; // Length of output data
|
|
af_data_t* c = data; // Current working data
|
|
af_data_t* l = af->data; // Local data
|
|
af_resample_t* s = (af_resample_t*)af->setup;
|
|
|
|
if(AF_OK != RESIZE_LOCAL_BUFFER(af,data))
|
|
return NULL;
|
|
|
|
// Run resampling
|
|
switch(s->setup & RSMP_MASK){
|
|
case(RSMP_INT):
|
|
# define FORMAT_I 1
|
|
if(s->up>s->dn){
|
|
# define UP
|
|
# include "af_resample.h"
|
|
# undef UP
|
|
}
|
|
else{
|
|
# define DN
|
|
# include "af_resample.h"
|
|
# undef DN
|
|
}
|
|
break;
|
|
case(RSMP_FLOAT):
|
|
# undef FORMAT_I
|
|
# define FORMAT_F 1
|
|
if(s->up>s->dn){
|
|
# define UP
|
|
# include "af_resample.h"
|
|
# undef UP
|
|
}
|
|
else{
|
|
# define DN
|
|
# include "af_resample.h"
|
|
# undef DN
|
|
}
|
|
break;
|
|
case(RSMP_LIN):
|
|
len = linint(c, l, s);
|
|
break;
|
|
}
|
|
|
|
// Set output data
|
|
c->audio = l->audio;
|
|
c->len = len*l->bps;
|
|
c->rate = l->rate;
|
|
|
|
return c;
|
|
}
|
|
|
|
// Allocate memory and set function pointers
|
|
static int open(af_instance_t* af){
|
|
af->control=control;
|
|
af->uninit=uninit;
|
|
af->play=play;
|
|
af->mul.n=1;
|
|
af->mul.d=1;
|
|
af->data=calloc(1,sizeof(af_data_t));
|
|
af->setup=calloc(1,sizeof(af_resample_t));
|
|
if(af->data == NULL || af->setup == NULL)
|
|
return AF_ERROR;
|
|
((af_resample_t*)af->setup)->setup = RSMP_INT | FREQ_SLOPPY;
|
|
return AF_OK;
|
|
}
|
|
|
|
// Description of this plugin
|
|
af_info_t af_info_resample = {
|
|
"Sample frequency conversion",
|
|
"resample",
|
|
"Anders",
|
|
"",
|
|
AF_FLAGS_REENTRANT,
|
|
open
|
|
};
|
|
|