mirror of
https://github.com/mpv-player/mpv
synced 2025-01-12 09:59:44 +00:00
1cfcc1e1d5
Don't allow rounding to let it underflow to 0. 0 width or height is simply not allowed and could cause problems otherwhere. Indirectly fixes CID 1350057, which complains about not checking the resulting output size values before using it in divisions.
777 lines
26 KiB
C
777 lines
26 KiB
C
/*
|
|
* This file is part of mpv.
|
|
*
|
|
* mpv is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* mpv is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with mpv. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <pthread.h>
|
|
#include <assert.h>
|
|
|
|
#include <libavutil/mem.h>
|
|
#include <libavutil/common.h>
|
|
#include <libavutil/bswap.h>
|
|
#include <libavutil/rational.h>
|
|
#include <libavcodec/avcodec.h>
|
|
|
|
#include "mpv_talloc.h"
|
|
|
|
#include "img_format.h"
|
|
#include "mp_image.h"
|
|
#include "sws_utils.h"
|
|
#include "fmt-conversion.h"
|
|
#include "gpu_memcpy.h"
|
|
|
|
#include "video/filter/vf.h"
|
|
|
|
static bool mp_image_alloc_planes(struct mp_image *mpi)
|
|
{
|
|
assert(!mpi->planes[0]);
|
|
assert(!mpi->bufs[0]);
|
|
|
|
if (!mp_image_params_valid(&mpi->params) || mpi->fmt.flags & MP_IMGFLAG_HWACCEL)
|
|
return false;
|
|
|
|
// Note: for non-mod-2 4:2:0 YUV frames, we have to allocate an additional
|
|
// top/right border. This is needed for correct handling of such
|
|
// images in filter and VO code (e.g. vo_vdpau or vo_opengl).
|
|
|
|
size_t plane_size[MP_MAX_PLANES];
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
int alloc_h = MP_ALIGN_UP(mpi->h, 32) >> mpi->fmt.ys[n];
|
|
int line_bytes = (mp_image_plane_w(mpi, n) * mpi->fmt.bpp[n] + 7) / 8;
|
|
mpi->stride[n] = FFALIGN(line_bytes, SWS_MIN_BYTE_ALIGN);
|
|
plane_size[n] = mpi->stride[n] * alloc_h;
|
|
}
|
|
if (mpi->fmt.flags & MP_IMGFLAG_PAL)
|
|
plane_size[1] = MP_PALETTE_SIZE;
|
|
|
|
size_t sum = 0;
|
|
for (int n = 0; n < MP_MAX_PLANES; n++)
|
|
sum += plane_size[n];
|
|
|
|
// Note: mp_image_pool assumes this creates only 1 AVBufferRef.
|
|
mpi->bufs[0] = av_buffer_alloc(FFMAX(sum, 1));
|
|
if (!mpi->bufs[0])
|
|
return false;
|
|
|
|
uint8_t *data = mpi->bufs[0]->data;
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
mpi->planes[n] = plane_size[n] ? data : NULL;
|
|
data += plane_size[n];
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void mp_image_setfmt(struct mp_image *mpi, int out_fmt)
|
|
{
|
|
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
|
|
mpi->params.imgfmt = fmt.id;
|
|
mpi->fmt = fmt;
|
|
mpi->imgfmt = fmt.id;
|
|
mpi->num_planes = fmt.num_planes;
|
|
mp_image_set_size(mpi, mpi->w, mpi->h);
|
|
}
|
|
|
|
static void mp_image_destructor(void *ptr)
|
|
{
|
|
mp_image_t *mpi = ptr;
|
|
for (int p = 0; p < MP_MAX_PLANES; p++)
|
|
av_buffer_unref(&mpi->bufs[p]);
|
|
}
|
|
|
|
int mp_chroma_div_up(int size, int shift)
|
|
{
|
|
return (size + (1 << shift) - 1) >> shift;
|
|
}
|
|
|
|
// Return the storage width in pixels of the given plane.
|
|
int mp_image_plane_w(struct mp_image *mpi, int plane)
|
|
{
|
|
return mp_chroma_div_up(mpi->w, mpi->fmt.xs[plane]);
|
|
}
|
|
|
|
// Return the storage height in pixels of the given plane.
|
|
int mp_image_plane_h(struct mp_image *mpi, int plane)
|
|
{
|
|
return mp_chroma_div_up(mpi->h, mpi->fmt.ys[plane]);
|
|
}
|
|
|
|
// Caller has to make sure this doesn't exceed the allocated plane data/strides.
|
|
void mp_image_set_size(struct mp_image *mpi, int w, int h)
|
|
{
|
|
assert(w >= 0 && h >= 0);
|
|
mpi->w = mpi->params.w = w;
|
|
mpi->h = mpi->params.h = h;
|
|
mpi->params.p_w = mpi->params.p_h = 1;
|
|
}
|
|
|
|
void mp_image_set_params(struct mp_image *image,
|
|
const struct mp_image_params *params)
|
|
{
|
|
// possibly initialize other stuff
|
|
mp_image_setfmt(image, params->imgfmt);
|
|
mp_image_set_size(image, params->w, params->h);
|
|
image->params = *params;
|
|
}
|
|
|
|
struct mp_image *mp_image_alloc(int imgfmt, int w, int h)
|
|
{
|
|
struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
|
|
talloc_set_destructor(mpi, mp_image_destructor);
|
|
|
|
mp_image_set_size(mpi, w, h);
|
|
mp_image_setfmt(mpi, imgfmt);
|
|
if (!mp_image_alloc_planes(mpi)) {
|
|
talloc_free(mpi);
|
|
return NULL;
|
|
}
|
|
return mpi;
|
|
}
|
|
|
|
struct mp_image *mp_image_new_copy(struct mp_image *img)
|
|
{
|
|
struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
|
|
if (!new)
|
|
return NULL;
|
|
mp_image_copy(new, img);
|
|
mp_image_copy_attributes(new, img);
|
|
return new;
|
|
}
|
|
|
|
// Make dst take over the image data of src, and free src.
|
|
// This is basically a safe version of *dst = *src; free(src);
|
|
// Only works with ref-counted images, and can't change image size/format.
|
|
void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
|
|
assert(dst->bufs[0] && src->bufs[0]);
|
|
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
dst->planes[p] = src->planes[p];
|
|
dst->stride[p] = src->stride[p];
|
|
}
|
|
mp_image_copy_attributes(dst, src);
|
|
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
av_buffer_unref(&dst->bufs[p]);
|
|
dst->bufs[p] = src->bufs[p];
|
|
src->bufs[p] = NULL;
|
|
}
|
|
talloc_free(src);
|
|
}
|
|
|
|
// Return a new reference to img. The returned reference is owned by the caller,
|
|
// while img is left untouched.
|
|
struct mp_image *mp_image_new_ref(struct mp_image *img)
|
|
{
|
|
if (!img)
|
|
return NULL;
|
|
|
|
if (!img->bufs[0])
|
|
return mp_image_new_copy(img);
|
|
|
|
struct mp_image *new = talloc_ptrtype(NULL, new);
|
|
talloc_set_destructor(new, mp_image_destructor);
|
|
*new = *img;
|
|
|
|
bool fail = false;
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
if (new->bufs[p]) {
|
|
new->bufs[p] = av_buffer_ref(new->bufs[p]);
|
|
if (!new->bufs[p])
|
|
fail = true;
|
|
}
|
|
}
|
|
|
|
if (!fail)
|
|
return new;
|
|
|
|
// Do this after _all_ bufs were changed; we don't want it to free bufs
|
|
// from the original image if this fails.
|
|
talloc_free(new);
|
|
return NULL;
|
|
}
|
|
|
|
struct free_args {
|
|
void *arg;
|
|
void (*free)(void *arg);
|
|
};
|
|
|
|
static void call_free(void *opaque, uint8_t *data)
|
|
{
|
|
struct free_args *args = opaque;
|
|
args->free(args->arg);
|
|
talloc_free(args);
|
|
}
|
|
|
|
// Create a new mp_image based on img, but don't set any buffers.
|
|
// Using this is only valid until the original img is unreferenced (including
|
|
// implicit unreferencing of the data by mp_image_make_writeable()), unless
|
|
// a new reference is set.
|
|
struct mp_image *mp_image_new_dummy_ref(struct mp_image *img)
|
|
{
|
|
struct mp_image *new = talloc_ptrtype(NULL, new);
|
|
talloc_set_destructor(new, mp_image_destructor);
|
|
*new = *img;
|
|
for (int p = 0; p < MP_MAX_PLANES; p++)
|
|
new->bufs[p] = NULL;
|
|
return new;
|
|
}
|
|
|
|
// Return a reference counted reference to img. If the reference count reaches
|
|
// 0, call free(free_arg). The data passed by img must not be free'd before
|
|
// that. The new reference will be writeable.
|
|
// On allocation failure, unref the frame and return NULL.
|
|
// This is only used for hw decoding; this is important, because libav* expects
|
|
// all plane data to be accounted for by AVBufferRefs.
|
|
struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
|
|
void (*free)(void *arg))
|
|
{
|
|
struct mp_image *new = mp_image_new_dummy_ref(img);
|
|
|
|
struct free_args *args = talloc_ptrtype(NULL, args);
|
|
*args = (struct free_args){free_arg, free};
|
|
new->bufs[0] = av_buffer_create(NULL, 0, call_free, args,
|
|
AV_BUFFER_FLAG_READONLY);
|
|
if (new->bufs[0])
|
|
return new;
|
|
talloc_free(new);
|
|
return NULL;
|
|
}
|
|
|
|
bool mp_image_is_writeable(struct mp_image *img)
|
|
{
|
|
if (!img->bufs[0])
|
|
return true; // not ref-counted => always considered writeable
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
if (!img->bufs[p])
|
|
break;
|
|
if (!av_buffer_is_writable(img->bufs[p]))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Make the image data referenced by img writeable. This allocates new data
|
|
// if the data wasn't already writeable, and img->planes[] and img->stride[]
|
|
// will be set to the copy.
|
|
// Returns success; if false is returned, the image could not be made writeable.
|
|
bool mp_image_make_writeable(struct mp_image *img)
|
|
{
|
|
if (mp_image_is_writeable(img))
|
|
return true;
|
|
|
|
struct mp_image *new = mp_image_new_copy(img);
|
|
if (!new)
|
|
return false;
|
|
mp_image_steal_data(img, new);
|
|
assert(mp_image_is_writeable(img));
|
|
return true;
|
|
}
|
|
|
|
// Helper function: unrefs *p_img, and sets *p_img to a new ref of new_value.
|
|
// Only unrefs *p_img and sets it to NULL if out of memory.
|
|
void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
|
|
{
|
|
if (*p_img != new_value) {
|
|
talloc_free(*p_img);
|
|
*p_img = new_value ? mp_image_new_ref(new_value) : NULL;
|
|
}
|
|
}
|
|
|
|
// Mere helper function (mp_image can be directly free'd with talloc_free)
|
|
void mp_image_unrefp(struct mp_image **p_img)
|
|
{
|
|
talloc_free(*p_img);
|
|
*p_img = NULL;
|
|
}
|
|
|
|
typedef void *(*memcpy_fn)(void *d, const void *s, size_t size);
|
|
|
|
static void memcpy_pic_cb(void *dst, const void *src, int bytesPerLine, int height,
|
|
int dstStride, int srcStride, memcpy_fn cpy)
|
|
{
|
|
if (bytesPerLine == dstStride && dstStride == srcStride && height) {
|
|
if (srcStride < 0) {
|
|
src = (uint8_t*)src + (height - 1) * srcStride;
|
|
dst = (uint8_t*)dst + (height - 1) * dstStride;
|
|
srcStride = -srcStride;
|
|
}
|
|
|
|
cpy(dst, src, srcStride * (height - 1) + bytesPerLine);
|
|
} else {
|
|
for (int i = 0; i < height; i++) {
|
|
cpy(dst, src, bytesPerLine);
|
|
src = (uint8_t*)src + srcStride;
|
|
dst = (uint8_t*)dst + dstStride;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void mp_image_copy_cb(struct mp_image *dst, struct mp_image *src,
|
|
memcpy_fn cpy)
|
|
{
|
|
assert(dst->imgfmt == src->imgfmt);
|
|
assert(dst->w == src->w && dst->h == src->h);
|
|
assert(mp_image_is_writeable(dst));
|
|
for (int n = 0; n < dst->num_planes; n++) {
|
|
int line_bytes = (mp_image_plane_w(dst, n) * dst->fmt.bpp[n] + 7) / 8;
|
|
int plane_h = mp_image_plane_h(dst, n);
|
|
memcpy_pic_cb(dst->planes[n], src->planes[n], line_bytes, plane_h,
|
|
dst->stride[n], src->stride[n], cpy);
|
|
}
|
|
// Watch out for AV_PIX_FMT_FLAG_PSEUDOPAL retardation
|
|
if ((dst->fmt.flags & MP_IMGFLAG_PAL) && dst->planes[1] && src->planes[1])
|
|
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
|
|
}
|
|
|
|
void mp_image_copy(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
mp_image_copy_cb(dst, src, memcpy);
|
|
}
|
|
|
|
void mp_image_copy_gpu(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
#if HAVE_SSE4_INTRINSICS
|
|
if (av_get_cpu_flags() & AV_CPU_FLAG_SSE4) {
|
|
mp_image_copy_cb(dst, src, gpu_memcpy);
|
|
return;
|
|
}
|
|
#endif
|
|
mp_image_copy(dst, src);
|
|
}
|
|
|
|
// Helper, only for outputting some log info.
|
|
void mp_check_gpu_memcpy(struct mp_log *log, bool *once)
|
|
{
|
|
if (once) {
|
|
if (*once)
|
|
return;
|
|
*once = true;
|
|
}
|
|
|
|
bool have_sse = false;
|
|
#if HAVE_SSE4_INTRINSICS
|
|
have_sse = av_get_cpu_flags() & AV_CPU_FLAG_SSE4;
|
|
#endif
|
|
if (have_sse) {
|
|
mp_verbose(log, "Using SSE4 memcpy\n");
|
|
} else {
|
|
mp_warn(log, "Using fallback memcpy (slow)\n");
|
|
}
|
|
}
|
|
|
|
void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
dst->pict_type = src->pict_type;
|
|
dst->fields = src->fields;
|
|
dst->pts = src->pts;
|
|
dst->dts = src->dts;
|
|
dst->params.rotate = src->params.rotate;
|
|
dst->params.stereo_in = src->params.stereo_in;
|
|
dst->params.stereo_out = src->params.stereo_out;
|
|
if (dst->w == src->w && dst->h == src->h) {
|
|
dst->params.p_w = src->params.p_w;
|
|
dst->params.p_h = src->params.p_h;
|
|
}
|
|
dst->params.primaries = src->params.primaries;
|
|
dst->params.gamma = src->params.gamma;
|
|
if ((dst->fmt.flags & MP_IMGFLAG_YUV) == (src->fmt.flags & MP_IMGFLAG_YUV)) {
|
|
dst->params.colorspace = src->params.colorspace;
|
|
dst->params.colorlevels = src->params.colorlevels;
|
|
dst->params.chroma_location = src->params.chroma_location;
|
|
}
|
|
mp_image_params_guess_csp(&dst->params); // ensure colorspace consistency
|
|
if ((dst->fmt.flags & MP_IMGFLAG_PAL) && (src->fmt.flags & MP_IMGFLAG_PAL)) {
|
|
if (dst->planes[1] && src->planes[1]) {
|
|
if (mp_image_make_writeable(dst))
|
|
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Crop the given image to (x0, y0)-(x1, y1) (bottom/right border exclusive)
|
|
// x0/y0 must be naturally aligned.
|
|
void mp_image_crop(struct mp_image *img, int x0, int y0, int x1, int y1)
|
|
{
|
|
assert(x0 >= 0 && y0 >= 0);
|
|
assert(x0 <= x1 && y0 <= y1);
|
|
assert(x1 <= img->w && y1 <= img->h);
|
|
assert(!(x0 & (img->fmt.align_x - 1)));
|
|
assert(!(y0 & (img->fmt.align_y - 1)));
|
|
|
|
for (int p = 0; p < img->num_planes; ++p) {
|
|
img->planes[p] += (y0 >> img->fmt.ys[p]) * img->stride[p] +
|
|
(x0 >> img->fmt.xs[p]) * img->fmt.bpp[p] / 8;
|
|
}
|
|
mp_image_set_size(img, x1 - x0, y1 - y0);
|
|
}
|
|
|
|
void mp_image_crop_rc(struct mp_image *img, struct mp_rect rc)
|
|
{
|
|
mp_image_crop(img, rc.x0, rc.y0, rc.x1, rc.y1);
|
|
}
|
|
|
|
// Bottom/right border is allowed not to be aligned, but it might implicitly
|
|
// overwrite pixel data until the alignment (align_x/align_y) is reached.
|
|
void mp_image_clear(struct mp_image *img, int x0, int y0, int x1, int y1)
|
|
{
|
|
assert(x0 >= 0 && y0 >= 0);
|
|
assert(x0 <= x1 && y0 <= y1);
|
|
assert(x1 <= img->w && y1 <= img->h);
|
|
assert(!(x0 & (img->fmt.align_x - 1)));
|
|
assert(!(y0 & (img->fmt.align_y - 1)));
|
|
|
|
struct mp_image area = *img;
|
|
mp_image_crop(&area, x0, y0, x1, y1);
|
|
|
|
uint32_t plane_clear[MP_MAX_PLANES] = {0};
|
|
|
|
if (area.imgfmt == IMGFMT_YUYV) {
|
|
plane_clear[0] = av_le2ne16(0x8000);
|
|
} else if (area.imgfmt == IMGFMT_UYVY) {
|
|
plane_clear[0] = av_le2ne16(0x0080);
|
|
} else if (area.imgfmt == IMGFMT_NV12 || area.imgfmt == IMGFMT_NV21) {
|
|
plane_clear[1] = 0x8080;
|
|
} else if (area.fmt.flags & MP_IMGFLAG_YUV_P) {
|
|
uint16_t chroma_clear = (1 << area.fmt.plane_bits) / 2;
|
|
if (!(area.fmt.flags & MP_IMGFLAG_NE))
|
|
chroma_clear = av_bswap16(chroma_clear);
|
|
if (area.num_planes > 2)
|
|
plane_clear[1] = plane_clear[2] = chroma_clear;
|
|
}
|
|
|
|
for (int p = 0; p < area.num_planes; p++) {
|
|
int bpp = area.fmt.bpp[p];
|
|
int bytes = (mp_image_plane_w(&area, p) * bpp + 7) / 8;
|
|
if (bpp <= 8) {
|
|
memset_pic(area.planes[p], plane_clear[p], bytes,
|
|
mp_image_plane_h(&area, p), area.stride[p]);
|
|
} else {
|
|
memset16_pic(area.planes[p], plane_clear[p], (bytes + 1) / 2,
|
|
mp_image_plane_h(&area, p), area.stride[p]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void mp_image_vflip(struct mp_image *img)
|
|
{
|
|
for (int p = 0; p < img->num_planes; p++) {
|
|
int plane_h = mp_image_plane_h(img, p);
|
|
img->planes[p] = img->planes[p] + img->stride[p] * (plane_h - 1);
|
|
img->stride[p] = -img->stride[p];
|
|
}
|
|
}
|
|
|
|
// Display size derived from image size and pixel aspect ratio.
|
|
void mp_image_params_get_dsize(const struct mp_image_params *p,
|
|
int *d_w, int *d_h)
|
|
{
|
|
*d_w = p->w;
|
|
*d_h = p->h;
|
|
if (p->p_w > p->p_h && p->p_h >= 1)
|
|
*d_w = MPCLAMP(*d_w * (int64_t)p->p_w / p->p_h, 1, INT_MAX);
|
|
if (p->p_h > p->p_w && p->p_w >= 1)
|
|
*d_h = MPCLAMP(*d_h * (int64_t)p->p_h / p->p_w, 1, INT_MAX);
|
|
}
|
|
|
|
void mp_image_params_set_dsize(struct mp_image_params *p, int d_w, int d_h)
|
|
{
|
|
AVRational ds = av_div_q((AVRational){d_w, d_h}, (AVRational){p->w, p->h});
|
|
p->p_w = ds.num;
|
|
p->p_h = ds.den;
|
|
}
|
|
|
|
char *mp_image_params_to_str_buf(char *b, size_t bs,
|
|
const struct mp_image_params *p)
|
|
{
|
|
if (p && p->imgfmt) {
|
|
snprintf(b, bs, "%dx%d", p->w, p->h);
|
|
if (p->p_w != p->p_h || !p->p_w)
|
|
mp_snprintf_cat(b, bs, " [%d:%d]", p->p_w, p->p_h);
|
|
mp_snprintf_cat(b, bs, " %s", mp_imgfmt_to_name(p->imgfmt));
|
|
mp_snprintf_cat(b, bs, " %s/%s",
|
|
m_opt_choice_str(mp_csp_names, p->colorspace),
|
|
m_opt_choice_str(mp_csp_levels_names, p->colorlevels));
|
|
mp_snprintf_cat(b, bs, " CL=%s",
|
|
m_opt_choice_str(mp_chroma_names, p->chroma_location));
|
|
if (p->rotate)
|
|
mp_snprintf_cat(b, bs, " rot=%d", p->rotate);
|
|
if (p->stereo_in > 0 || p->stereo_out > 0) {
|
|
mp_snprintf_cat(b, bs, " stereo=%s/%s",
|
|
MP_STEREO3D_NAME_DEF(p->stereo_in, "?"),
|
|
MP_STEREO3D_NAME_DEF(p->stereo_out, "?"));
|
|
}
|
|
} else {
|
|
snprintf(b, bs, "???");
|
|
}
|
|
return b;
|
|
}
|
|
|
|
// Return whether the image parameters are valid.
|
|
// Some non-essential fields are allowed to be unset (like colorspace flags).
|
|
bool mp_image_params_valid(const struct mp_image_params *p)
|
|
{
|
|
// av_image_check_size has similar checks and triggers around 16000*16000
|
|
// It's mostly needed to deal with the fact that offsets are sometimes
|
|
// ints. We also should (for now) do the same as FFmpeg, to be sure large
|
|
// images don't crash with libswscale or when wrapping with AVFrame and
|
|
// passing the result to filters.
|
|
if (p->w <= 0 || p->h <= 0 || (p->w + 128LL) * (p->h + 128LL) >= INT_MAX / 8)
|
|
return false;
|
|
|
|
if (p->p_w <= 0 || p->p_h <= 0)
|
|
return false;
|
|
|
|
if (p->rotate < 0 || p->rotate >= 360)
|
|
return false;
|
|
|
|
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(p->imgfmt);
|
|
if (!desc.id)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool mp_image_params_equal(const struct mp_image_params *p1,
|
|
const struct mp_image_params *p2)
|
|
{
|
|
return p1->imgfmt == p2->imgfmt &&
|
|
p1->w == p2->w && p1->h == p2->h &&
|
|
p1->p_w == p2->p_w && p1->p_h == p2->p_h &&
|
|
p1->colorspace == p2->colorspace &&
|
|
p1->colorlevels == p2->colorlevels &&
|
|
p1->primaries == p2->primaries &&
|
|
p1->gamma == p2->gamma &&
|
|
p1->chroma_location == p2->chroma_location &&
|
|
p1->rotate == p2->rotate &&
|
|
p1->stereo_in == p2->stereo_in &&
|
|
p1->stereo_out == p2->stereo_out;
|
|
}
|
|
|
|
// Set most image parameters, but not image format or size.
|
|
// Display size is used to set the PAR.
|
|
void mp_image_set_attributes(struct mp_image *image,
|
|
const struct mp_image_params *params)
|
|
{
|
|
struct mp_image_params nparams = *params;
|
|
nparams.imgfmt = image->imgfmt;
|
|
nparams.w = image->w;
|
|
nparams.h = image->h;
|
|
if (nparams.imgfmt != params->imgfmt)
|
|
mp_image_params_guess_csp(&nparams);
|
|
mp_image_set_params(image, &nparams);
|
|
}
|
|
|
|
// If details like params->colorspace/colorlevels are missing, guess them from
|
|
// the other settings. Also, even if they are set, make them consistent with
|
|
// the colorspace as implied by the pixel format.
|
|
void mp_image_params_guess_csp(struct mp_image_params *params)
|
|
{
|
|
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(params->imgfmt);
|
|
if (!fmt.id)
|
|
return;
|
|
if (fmt.flags & MP_IMGFLAG_YUV) {
|
|
if (params->colorspace != MP_CSP_BT_601 &&
|
|
params->colorspace != MP_CSP_BT_709 &&
|
|
params->colorspace != MP_CSP_BT_2020_NC &&
|
|
params->colorspace != MP_CSP_BT_2020_C &&
|
|
params->colorspace != MP_CSP_SMPTE_240M &&
|
|
params->colorspace != MP_CSP_YCGCO)
|
|
{
|
|
// Makes no sense, so guess instead
|
|
// YCGCO should be separate, but libavcodec disagrees
|
|
params->colorspace = MP_CSP_AUTO;
|
|
}
|
|
if (params->colorspace == MP_CSP_AUTO)
|
|
params->colorspace = mp_csp_guess_colorspace(params->w, params->h);
|
|
if (params->colorlevels == MP_CSP_LEVELS_AUTO)
|
|
params->colorlevels = MP_CSP_LEVELS_TV;
|
|
if (params->primaries == MP_CSP_PRIM_AUTO) {
|
|
// Guess based on the colormatrix as a first priority
|
|
if (params->colorspace == MP_CSP_BT_2020_NC ||
|
|
params->colorspace == MP_CSP_BT_2020_C) {
|
|
params->primaries = MP_CSP_PRIM_BT_2020;
|
|
} else if (params->colorspace == MP_CSP_BT_709) {
|
|
params->primaries = MP_CSP_PRIM_BT_709;
|
|
} else {
|
|
// Ambiguous colormatrix for BT.601, guess based on res
|
|
params->primaries = mp_csp_guess_primaries(params->w, params->h);
|
|
}
|
|
}
|
|
if (params->gamma == MP_CSP_TRC_AUTO)
|
|
params->gamma = MP_CSP_TRC_BT_1886;
|
|
} else if (fmt.flags & MP_IMGFLAG_RGB) {
|
|
params->colorspace = MP_CSP_RGB;
|
|
params->colorlevels = MP_CSP_LEVELS_PC;
|
|
|
|
// The majority of RGB content is either sRGB or (rarely) some other
|
|
// color space which we don't even handle, like AdobeRGB or
|
|
// ProPhotoRGB. The only reasonable thing we can do is assume it's
|
|
// sRGB and hope for the best, which should usually just work out fine.
|
|
// Note: sRGB primaries = BT.709 primaries
|
|
if (params->primaries == MP_CSP_PRIM_AUTO)
|
|
params->primaries = MP_CSP_PRIM_BT_709;
|
|
if (params->gamma == MP_CSP_TRC_AUTO)
|
|
params->gamma = MP_CSP_TRC_SRGB;
|
|
} else if (fmt.flags & MP_IMGFLAG_XYZ) {
|
|
params->colorspace = MP_CSP_XYZ;
|
|
params->colorlevels = MP_CSP_LEVELS_PC;
|
|
|
|
// The default XYZ matrix converts it to BT.709 color space
|
|
// since that's the most likely scenario. Proper VOs should ignore
|
|
// this field as well as the matrix and treat XYZ input as absolute,
|
|
// but for VOs which use the matrix (and hence, consult this field)
|
|
// this is the correct parameter. This doubles as a reasonable output
|
|
// gamut for VOs which *do* use the specialized XYZ matrix but don't
|
|
// know any better output gamut other than whatever the source is
|
|
// tagged with.
|
|
if (params->primaries == MP_CSP_PRIM_AUTO)
|
|
params->primaries = MP_CSP_PRIM_BT_709;
|
|
if (params->gamma == MP_CSP_TRC_AUTO)
|
|
params->gamma = MP_CSP_TRC_LINEAR;
|
|
} else {
|
|
// We have no clue.
|
|
params->colorspace = MP_CSP_AUTO;
|
|
params->colorlevels = MP_CSP_LEVELS_AUTO;
|
|
params->primaries = MP_CSP_PRIM_AUTO;
|
|
params->gamma = MP_CSP_TRC_AUTO;
|
|
}
|
|
}
|
|
|
|
// Copy properties and data of the AVFrame into the mp_image, without taking
|
|
// care of memory management issues.
|
|
void mp_image_copy_fields_from_av_frame(struct mp_image *dst,
|
|
struct AVFrame *src)
|
|
{
|
|
mp_image_setfmt(dst, pixfmt2imgfmt(src->format));
|
|
mp_image_set_size(dst, src->width, src->height);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
dst->planes[i] = src->data[i];
|
|
dst->stride[i] = src->linesize[i];
|
|
}
|
|
|
|
dst->pict_type = src->pict_type;
|
|
|
|
dst->fields = 0;
|
|
if (src->interlaced_frame)
|
|
dst->fields |= MP_IMGFIELD_INTERLACED;
|
|
if (src->top_field_first)
|
|
dst->fields |= MP_IMGFIELD_TOP_FIRST;
|
|
if (src->repeat_pict == 1)
|
|
dst->fields |= MP_IMGFIELD_REPEAT_FIRST;
|
|
}
|
|
|
|
// Copy properties and data of the mp_image into the AVFrame, without taking
|
|
// care of memory management issues.
|
|
void mp_image_copy_fields_to_av_frame(struct AVFrame *dst,
|
|
struct mp_image *src)
|
|
{
|
|
dst->format = imgfmt2pixfmt(src->imgfmt);
|
|
dst->width = src->w;
|
|
dst->height = src->h;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
dst->data[i] = src->planes[i];
|
|
dst->linesize[i] = src->stride[i];
|
|
}
|
|
dst->extended_data = dst->data;
|
|
|
|
dst->pict_type = src->pict_type;
|
|
if (src->fields & MP_IMGFIELD_INTERLACED)
|
|
dst->interlaced_frame = 1;
|
|
if (src->fields & MP_IMGFIELD_TOP_FIRST)
|
|
dst->top_field_first = 1;
|
|
if (src->fields & MP_IMGFIELD_REPEAT_FIRST)
|
|
dst->repeat_pict = 1;
|
|
|
|
dst->colorspace = mp_csp_to_avcol_spc(src->params.colorspace);
|
|
dst->color_range = mp_csp_levels_to_avcol_range(src->params.colorlevels);
|
|
}
|
|
|
|
// Create a new mp_image reference to av_frame.
|
|
struct mp_image *mp_image_from_av_frame(struct AVFrame *av_frame)
|
|
{
|
|
struct mp_image t = {0};
|
|
mp_image_copy_fields_from_av_frame(&t, av_frame);
|
|
for (int p = 0; p < MP_MAX_PLANES; p++)
|
|
t.bufs[p] = av_frame->buf[p];
|
|
return mp_image_new_ref(&t);
|
|
}
|
|
|
|
// Convert the mp_image reference to a AVFrame reference.
|
|
// Warning: img is unreferenced (i.e. free'd). This is asymmetric to
|
|
// mp_image_from_av_frame(). It was done as some sort of optimization,
|
|
// but now these semantics are pointless.
|
|
// On failure, img is only unreffed.
|
|
struct AVFrame *mp_image_to_av_frame_and_unref(struct mp_image *img)
|
|
{
|
|
struct mp_image *new_ref = mp_image_new_ref(img); // ensure it's refcounted
|
|
talloc_free(img);
|
|
if (!new_ref)
|
|
return NULL;
|
|
AVFrame *frame = av_frame_alloc();
|
|
if (!frame) {
|
|
talloc_free(new_ref);
|
|
return NULL;
|
|
}
|
|
mp_image_copy_fields_to_av_frame(frame, new_ref);
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
frame->buf[p] = new_ref->bufs[p];
|
|
new_ref->bufs[p] = NULL;
|
|
}
|
|
talloc_free(new_ref);
|
|
return frame;
|
|
}
|
|
|
|
void memcpy_pic(void *dst, const void *src, int bytesPerLine, int height,
|
|
int dstStride, int srcStride)
|
|
{
|
|
memcpy_pic_cb(dst, src, bytesPerLine, height, dstStride, srcStride, memcpy);
|
|
}
|
|
|
|
void memset_pic(void *dst, int fill, int bytesPerLine, int height, int stride)
|
|
{
|
|
if (bytesPerLine == stride && height) {
|
|
memset(dst, fill, stride * (height - 1) + bytesPerLine);
|
|
} else {
|
|
for (int i = 0; i < height; i++) {
|
|
memset(dst, fill, bytesPerLine);
|
|
dst = (uint8_t *)dst + stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
void memset16_pic(void *dst, int fill, int unitsPerLine, int height, int stride)
|
|
{
|
|
if (fill == 0) {
|
|
memset_pic(dst, 0, unitsPerLine * 2, height, stride);
|
|
} else {
|
|
for (int i = 0; i < height; i++) {
|
|
uint16_t *line = dst;
|
|
uint16_t *end = line + unitsPerLine;
|
|
while (line < end)
|
|
*line++ = fill;
|
|
dst = (uint8_t *)dst + stride;
|
|
}
|
|
}
|
|
}
|