1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-18 04:51:52 +00:00
mpv/libaf/af.h
diego 5572645334 Remove config.h and move its content to af.h. There are multiple files under
the name config.h, inviting bugs and confusion.


git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@21249 b3059339-0415-0410-9bf9-f77b7e298cf2
2006-11-25 19:57:31 +00:00

397 lines
11 KiB
C

#ifndef __af_h__
#define __af_h__
#include <stdio.h>
#include "af_mp.h"
#include "config.h"
#include "control.h"
#include "af_format.h"
struct af_instance_s;
// Number of channels
#ifndef AF_NCH
#define AF_NCH 6
#endif
// Audio data chunk
typedef struct af_data_s
{
void* audio; // data buffer
int len; // buffer length
int rate; // sample rate
int nch; // number of channels
int format; // format
int bps; // bytes per sample
} af_data_t;
// Fraction, used to calculate buffer lengths
typedef struct frac_s
{
int n; // Numerator
int d; // Denominator
} frac_t;
int af_gcd(register int a, register int b);
void af_frac_cancel(frac_t *f);
void af_frac_mul(frac_t *out, const frac_t *in);
// Flags used for defining the behavior of an audio filter
#define AF_FLAGS_REENTRANT 0x00000000
#define AF_FLAGS_NOT_REENTRANT 0x00000001
/* Audio filter information not specific for current instance, but for
a specific filter */
typedef struct af_info_s
{
const char *info;
const char *name;
const char *author;
const char *comment;
const int flags;
int (*open)(struct af_instance_s* vf);
} af_info_t;
// Linked list of audio filters
typedef struct af_instance_s
{
af_info_t* info;
int (*control)(struct af_instance_s* af, int cmd, void* arg);
void (*uninit)(struct af_instance_s* af);
af_data_t* (*play)(struct af_instance_s* af, af_data_t* data);
void* setup; // setup data for this specific instance and filter
af_data_t* data; // configuration for outgoing data stream
struct af_instance_s* next;
struct af_instance_s* prev;
double delay; // Delay caused by the filter [ms]
frac_t mul; /* length multiplier: how much does this instance change
the length of the buffer. */
}af_instance_t;
// Initialization flags
extern int* af_cpu_speed;
#define AF_INIT_AUTO 0x00000000
#define AF_INIT_SLOW 0x00000001
#define AF_INIT_FAST 0x00000002
#define AF_INIT_FORCE 0x00000003
#define AF_INIT_TYPE_MASK 0x00000003
#define AF_INIT_INT 0x00000000
#define AF_INIT_FLOAT 0x00000004
#define AF_INIT_FORMAT_MASK 0x00000004
// Default init type
#ifndef AF_INIT_TYPE
#if defined(HAVE_SSE) || defined(HAVE_3DNOW)
#define AF_INIT_TYPE (af_cpu_speed?*af_cpu_speed:AF_INIT_FAST)
#else
#define AF_INIT_TYPE (af_cpu_speed?*af_cpu_speed:AF_INIT_SLOW)
#endif
#endif
// Configuration switches
typedef struct af_cfg_s{
int force; // Initialization type
char** list; /* list of names of filters that are added to filter
list during first initialization of stream */
}af_cfg_t;
// Current audio stream
typedef struct af_stream_s
{
// The first and last filter in the list
af_instance_t* first;
af_instance_t* last;
// Storage for input and output data formats
af_data_t input;
af_data_t output;
// Configuration for this stream
af_cfg_t cfg;
}af_stream_t;
/*********************************************
// Return values
*/
#define AF_DETACH 2
#define AF_OK 1
#define AF_TRUE 1
#define AF_FALSE 0
#define AF_UNKNOWN -1
#define AF_ERROR -2
#define AF_FATAL -3
/*********************************************
// Export functions
*/
/**
* \defgroup af_chain Audio filter chain functions
* \{
* \param s filter chain
*/
/**
* \brief Initialize the stream "s".
* \return 0 on success, -1 on failure
*
* This function creates a new filter list if necessary, according
* to the values set in input and output. Input and output should contain
* the format of the current movie and the format of the preferred output
* respectively.
* Filters to convert to the preferred output format are inserted
* automatically, except when they are set to 0.
* The function is reentrant i.e. if called with an already initialized
* stream the stream will be reinitialized.
*/
int af_init(af_stream_t* s);
/**
* \brief Uninit and remove all filters from audio filter chain
*/
void af_uninit(af_stream_t* s);
/**
* \brief This function adds the filter "name" to the stream s.
* \param name name of filter to add
* \return pointer to the new filter, NULL if insert failed
*
* The filter will be inserted somewhere nice in the
* list of filters (i.e. at the beginning unless the
* first filter is the format filter (why??).
*/
af_instance_t* af_add(af_stream_t* s, char* name);
/**
* \brief Uninit and remove the filter "af"
* \param af filter to remove
*/
void af_remove(af_stream_t* s, af_instance_t* af);
/**
* \brief find filter in chain by name
* \param name name of the filter to find
* \return first filter with right name or NULL if not found
*
* This function is used for finding already initialized filters
*/
af_instance_t* af_get(af_stream_t* s, char* name);
/**
* \brief filter data chunk through the filters in the list
* \param data data to play
* \return resulting data
* \ingroup af_chain
*/
af_data_t* af_play(af_stream_t* s, af_data_t* data);
/**
* \brief send control to all filters, starting with the last until
* one accepts the command with AF_OK.
* \param cmd filter control command
* \param arg argument for filter command
* \return the accepting filter or NULL if none was found
*/
af_instance_t *af_control_any_rev (af_stream_t* s, int cmd, void* arg);
/**
* \brief Calculate how long the output from the filters will be for a given
* input length.
* \param len input lenght for which to calculate output length
* \return calculated output length, will always be >= the resulting
* length when actually calling af_play.
*/
int af_outputlen(af_stream_t* s, int len);
/**
* \brief Calculate how long the input to the filters should be to produce a
* certain output length
* \param len wanted output length
* \return input length required to produce the output length "len". Possibly
* smaller to avoid overflow of output buffer
*/
int af_inputlen(af_stream_t* s, int len);
/**
* \brief calculate required input length for desired output size
* \param len desired minimum output length
* \param max_outsize maximum output length
* \param max_insize maximum input length
* \return input length or -1 on error
*
Calculate how long the input IN to the filters should be to produce
a certain output length OUT but with the following three constraints:
1. IN <= max_insize, where max_insize is the maximum possible input
block length
2. OUT <= max_outsize, where max_outsize is the maximum possible
output block length
3. If possible OUT >= len.
*/
int af_calc_insize_constrained(af_stream_t* s, int len,
int max_outsize,int max_insize);
/**
* \brief Calculate the total delay caused by the filters
* \return delay in seconds
*/
double af_calc_delay(af_stream_t* s);
/** \} */ // end of af_chain group
// Helper functions and macros used inside the audio filters
/**
* \defgroup af_filter Audio filter helper functions
* \{
*/
/* Helper function called by the macro with the same name only to be
called from inside filters */
int af_resize_local_buffer(af_instance_t* af, af_data_t* data);
/* Helper function used to calculate the exact buffer length needed
when buffers are resized. The returned length is >= than what is
needed */
int af_lencalc(frac_t mul, af_data_t* data);
/**
* \brief convert dB to gain value
* \param n number of values to convert
* \param in [in] values in dB, <= -200 will become 0 gain
* \param out [out] gain values
* \param k input values are divided by this
* \param mi minimum dB value, input will be clamped to this
* \param ma maximum dB value, input will be clamped to this
* \return AF_ERROR on error, AF_OK otherwise
*/
int af_from_dB(int n, float* in, float* out, float k, float mi, float ma);
/**
* \brief convert gain value to dB
* \param n number of values to convert
* \param in [in] gain values, 0 wil become -200 dB
* \param out [out] values in dB
* \param k output values will be multiplied by this
* \return AF_ERROR on error, AF_OK otherwise
*/
int af_to_dB(int n, float* in, float* out, float k);
/**
* \brief convert milliseconds to sample time
* \param n number of values to convert
* \param in [in] values in milliseconds
* \param out [out] sample time values
* \param rate sample rate
* \param mi minimum ms value, input will be clamped to this
* \param ma maximum ms value, input will be clamped to this
* \return AF_ERROR on error, AF_OK otherwise
*/
int af_from_ms(int n, float* in, int* out, int rate, float mi, float ma);
/**
* \brief convert sample time to milliseconds
* \param n number of values to convert
* \param in [in] sample time values
* \param out [out] values in milliseconds
* \param rate sample rate
* \return AF_ERROR on error, AF_OK otherwise
*/
int af_to_ms(int n, int* in, float* out, int rate);
/**
* \brief test if output format matches
* \param af audio filter
* \param out needed format, will be overwritten by available
* format if they do not match
* \return AF_FALSE if formats do not match, AF_OK if they match
*
* compares the format, bps, rate and nch values of af->data with out
*/
int af_test_output(struct af_instance_s* af, af_data_t* out);
/**
* \brief soft clipping function using sin()
* \param a input value
* \return clipped value
*/
float af_softclip(float a);
/** \} */ // end of af_filter group, but more functions of this group below
/** Print a list of all available audio filters */
void af_help(void);
/**
* \brief fill the missing parameters in the af_data_t structure
* \param data structure to fill
* \ingroup af_filter
*
* Currently only sets bps based on format
*/
void af_fix_parameters(af_data_t *data);
/** Memory reallocation macro: if a local buffer is used (i.e. if the
filter doesn't operate on the incoming buffer this macro must be
called to ensure the buffer is big enough.
* \ingroup af_filter
*/
#define RESIZE_LOCAL_BUFFER(a,d)\
((a->data->len < af_lencalc(a->mul,d))?af_resize_local_buffer(a,d):AF_OK)
/* Some other useful macro definitions*/
#ifndef min
#define min(a,b)(((a)>(b))?(b):(a))
#endif
#ifndef max
#define max(a,b)(((a)>(b))?(a):(b))
#endif
#ifndef clamp
#define clamp(a,min,max) (((a)>(max))?(max):(((a)<(min))?(min):(a)))
#endif
#ifndef sign
#define sign(a) (((a)>0)?(1):(-1))
#endif
#ifndef lrnd
#define lrnd(a,b) ((b)((a)>=0.0?(a)+0.5:(a)-0.5))
#endif
/* Error messages */
typedef struct af_msg_cfg_s
{
int level; /* Message level for debug and error messages max = 2
min = -2 default = 0 */
FILE* err; // Stream to print error messages to
FILE* msg; // Stream to print information messages to
}af_msg_cfg_t;
extern af_msg_cfg_t af_msg_cfg; // Message
//! \addtogroup af_filter
//! \{
#define AF_MSG_FATAL -3 ///< Fatal error exit immediately
#define AF_MSG_ERROR -2 ///< Error return gracefully
#define AF_MSG_WARN -1 ///< Print warning but do not exit (can be suppressed)
#define AF_MSG_INFO 0 ///< Important information
#define AF_MSG_VERBOSE 1 ///< Print this if verbose is enabled
#define AF_MSG_DEBUG0 2 ///< Print if very verbose
#define AF_MSG_DEBUG1 3 ///< Print if very very verbose
//! Macro for printing error messages
#ifndef af_msg
#define af_msg(lev, args... ) \
(((lev)<AF_MSG_WARN)?(fprintf(af_msg_cfg.err?af_msg_cfg.err:stderr, ## args )): \
(((lev)<=af_msg_cfg.level)?(fprintf(af_msg_cfg.msg?af_msg_cfg.msg:stdout, ## args )):0))
#endif
//! \}
#endif /* __af_h__ */