1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-15 03:15:52 +00:00
mpv/libfaad2/drm_dec.c
rtognimp 82361d50d0 Update to faad2 cvs 20040915+MPlayer fixes
Patch by me and Emanuele Giaquinta


git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@18142 b3059339-0415-0410-9bf9-f77b7e298cf2
2006-04-18 19:39:34 +00:00

991 lines
48 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR and PS decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id$
**/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "common.h"
#ifdef DRM
#include "sbr_dec.h"
#include "drm_dec.h"
#include "bits.h"
/* constants */
#define DECAY_CUTOFF 3
#define DECAY_SLOPE 0.05f
/* type definitaions */
typedef const int8_t (*drm_ps_huff_tab)[2];
/* binary search huffman tables */
static const int8_t f_huffman_sa[][2] =
{
{ /*0*/ -15, 1 }, /* index 0: 1 bits: x */
{ 2, 3 }, /* index 1: 2 bits: 1x */
{ /*7*/ -8, 4 }, /* index 2: 3 bits: 10x */
{ 5, 6 }, /* index 3: 3 bits: 11x */
{ /*1*/ -14, /*-1*/ -16 }, /* index 4: 4 bits: 101x */
{ /*-2*/ -17, 7 }, /* index 5: 4 bits: 110x */
{ 8, 9 }, /* index 6: 4 bits: 111x */
{ /*2*/ -13, /*-3*/ -18 }, /* index 7: 5 bits: 1101x */
{ /*3*/ -12, 10 }, /* index 8: 5 bits: 1110x */
{ 11, 12 }, /* index 9: 5 bits: 1111x */
{ /*4*/ -11, /*5*/ -10 }, /* index 10: 6 bits: 11101x */
{ /*-4*/ -19, /*-5*/ -20 }, /* index 11: 6 bits: 11110x */
{ /*6*/ -9, 13 }, /* index 12: 6 bits: 11111x */
{ /*-7*/ -22, /*-6*/ -21 } /* index 13: 7 bits: 111111x */
};
static const int8_t t_huffman_sa[][2] =
{
{ /*0*/ -15, 1 }, /* index 0: 1 bits: x */
{ 2, 3 }, /* index 1: 2 bits: 1x */
{ /*-1*/ -16, /*1*/ -14 }, /* index 2: 3 bits: 10x */
{ 4, 5 }, /* index 3: 3 bits: 11x */
{ /*-2*/ -17, /*2*/ -13 }, /* index 4: 4 bits: 110x */
{ 6, 7 }, /* index 5: 4 bits: 111x */
{ /*-3*/ -18, /*3*/ -12 }, /* index 6: 5 bits: 1110x */
{ 8, 9 }, /* index 7: 5 bits: 1111x */
{ /*-4*/ -19, /*4*/ -11 }, /* index 8: 6 bits: 11110x */
{ 10, 11 }, /* index 9: 6 bits: 11111x */
{ /*-5*/ -20, /*5*/ -10 }, /* index 10: 7 bits: 111110x */
{ /*-6*/ -21, 12 }, /* index 11: 7 bits: 111111x */
{ /*-7*/ -22, 13 }, /* index 12: 8 bits: 1111111x */
{ /*6*/ -9, /*7*/ -8 } /* index 13: 9 bits: 11111111x */
};
static const int8_t f_huffman_pan[][2] =
{
{ /*0*/ -15, 1 }, /* index 0: 1 bits: x */
{ /*-1*/ -16, 2 }, /* index 1: 2 bits: 1x */
{ /*1*/ -14, 3 }, /* index 2: 3 bits: 11x */
{ 4, 5 }, /* index 3: 4 bits: 111x */
{ /*-2*/ -17, /*2*/ -13 }, /* index 4: 5 bits: 1110x */
{ 6, 7 }, /* index 5: 5 bits: 1111x */
{ /*-3*/ -18, /*3*/ -12 }, /* index 6: 6 bits: 11110x */
{ 8, 9 }, /* index 7: 6 bits: 11111x */
{ /*-4*/ -19, /*4*/ -11 }, /* index 8: 7 bits: 111110x */
{ 10, 11 }, /* index 9: 7 bits: 111111x */
{ /*-5*/ -20, /*5*/ -10 }, /* index 10: 8 bits: 1111110x */
{ 12, 13 }, /* index 11: 8 bits: 1111111x */
{ /*-6*/ -21, /*6*/ -9 }, /* index 12: 9 bits: 11111110x */
{ /*-7*/ -22, 14 }, /* index 13: 9 bits: 11111111x */
{ /*7*/ -8, 15 }, /* index 14: 10 bits: 111111111x */
{ 16, 17 }, /* index 15: 11 bits: 1111111111x */
{ /*-8*/ -23, /*8*/ -7 }, /* index 16: 12 bits: 11111111110x */
{ 18, 19 }, /* index 17: 12 bits: 11111111111x */
{ /*-10*/ -25, 20 }, /* index 18: 13 bits: 111111111110x */
{ 21, 22 }, /* index 19: 13 bits: 111111111111x */
{ /*-9*/ -24, /*9*/ -6 }, /* index 20: 14 bits: 1111111111101x */
{ /*10*/ -5, 23 }, /* index 21: 14 bits: 1111111111110x */
{ 24, 25 }, /* index 22: 14 bits: 1111111111111x */
{ /*-13*/ -28, /*-11*/ -26 }, /* index 23: 15 bits: 11111111111101x */
{ /*11*/ -4, /*13*/ -2 }, /* index 24: 15 bits: 11111111111110x */
{ 26, 27 }, /* index 25: 15 bits: 11111111111111x */
{ /*-14*/ -29, /*-12*/ -27 }, /* index 26: 16 bits: 111111111111110x */
{ /*12*/ -3, /*14*/ -1 } /* index 27: 16 bits: 111111111111111x */
};
static const int8_t t_huffman_pan[][2] =
{
{ /*0*/ -15, 1 }, /* index 0: 1 bits: x */
{ /*-1*/ -16, 2 }, /* index 1: 2 bits: 1x */
{ /*1*/ -14, 3 }, /* index 2: 3 bits: 11x */
{ /*-2*/ -17, 4 }, /* index 3: 4 bits: 111x */
{ /*2*/ -13, 5 }, /* index 4: 5 bits: 1111x */
{ /*-3*/ -18, 6 }, /* index 5: 6 bits: 11111x */
{ /*3*/ -12, 7 }, /* index 6: 7 bits: 111111x */
{ /*-4*/ -19, 8 }, /* index 7: 8 bits: 1111111x */
{ /*4*/ -11, 9 }, /* index 8: 9 bits: 11111111x */
{ 10, 11 }, /* index 9: 10 bits: 111111111x */
{ /*-5*/ -20, /*5*/ -10 }, /* index 10: 11 bits: 1111111110x */
{ 12, 13 }, /* index 11: 11 bits: 1111111111x */
{ /*-6*/ -21, /*6*/ -9 }, /* index 12: 12 bits: 11111111110x */
{ 14, 15 }, /* index 13: 12 bits: 11111111111x */
{ /*-7*/ -22, /*7*/ -8 }, /* index 14: 13 bits: 111111111110x */
{ 16, 17 }, /* index 15: 13 bits: 111111111111x */
{ /*-8*/ -23, /*8*/ -7 }, /* index 16: 14 bits: 1111111111110x */
{ 18, 19 }, /* index 17: 14 bits: 1111111111111x */
{ /*-10*/ -25, /*10*/ -5 }, /* index 18: 15 bits: 11111111111110x */
{ 20, 21 }, /* index 19: 15 bits: 11111111111111x */
{ /*-9*/ -24, /*9*/ -6 }, /* index 20: 16 bits: 111111111111110x */
{ 22, 23 }, /* index 21: 16 bits: 111111111111111x */
{ 24, 25 }, /* index 22: 17 bits: 1111111111111110x */
{ 26, 27 }, /* index 23: 17 bits: 1111111111111111x */
{ /*-14*/ -29, /*-13*/ -28 }, /* index 24: 18 bits: 11111111111111100x */
{ /*-12*/ -27, /*-11*/ -26 }, /* index 25: 18 bits: 11111111111111101x */
{ /*11*/ -4, /*12*/ -3 }, /* index 26: 18 bits: 11111111111111110x */
{ /*13*/ -2, /*14*/ -1 } /* index 27: 18 bits: 11111111111111111x */
};
/* There are 3 classes in the standard but the last 2 are identical */
static const real_t sa_quant[8][2] =
{
{ FRAC_CONST(0.0000), FRAC_CONST(0.0000) },
{ FRAC_CONST(0.0501), FRAC_CONST(0.1778) },
{ FRAC_CONST(0.0706), FRAC_CONST(0.2818) },
{ FRAC_CONST(0.0995), FRAC_CONST(0.4467) },
{ FRAC_CONST(0.1399), FRAC_CONST(0.5623) },
{ FRAC_CONST(0.1957), FRAC_CONST(0.7079) },
{ FRAC_CONST(0.2713), FRAC_CONST(0.8913) },
{ FRAC_CONST(0.3699), FRAC_CONST(1.0000) },
};
/* We don't need the actual quantizer values */
#if 0
static const real_t pan_quant[8][5] =
{
{ COEF_CONST(0.0000), COEF_CONST(0.0000), COEF_CONST(0.0000), COEF_CONST(0.0000), COEF_CONST(0.0000) },
{ COEF_CONST(0.1661), COEF_CONST(0.1661), COEF_CONST(0.3322), COEF_CONST(0.3322), COEF_CONST(0.3322) },
{ COEF_CONST(0.3322), COEF_CONST(0.3322), COEF_CONST(0.6644), COEF_CONST(0.8305), COEF_CONST(0.8305) },
{ COEF_CONST(0.4983), COEF_CONST(0.6644), COEF_CONST(0.9966), COEF_CONST(1.4949), COEF_CONST(1.6610) },
{ COEF_CONST(0.6644), COEF_CONST(0.9966), COEF_CONST(1.4949), COEF_CONST(2.1593), COEF_CONST(2.4914) },
{ COEF_CONST(0.8305), COEF_CONST(1.3288), COEF_CONST(2.1593), COEF_CONST(2.9897), COEF_CONST(3.4880) },
{ COEF_CONST(0.9966), COEF_CONST(1.8271), COEF_CONST(2.8236), COEF_CONST(3.8202), COEF_CONST(4.6507) },
{ COEF_CONST(1.3288), COEF_CONST(2.3253), COEF_CONST(3.4880), COEF_CONST(4.6507), COEF_CONST(5.8134) },
};
#endif
/* 2^(pan_quant[x][y] */
static const real_t pan_pow_2_pos[8][5] = {
{ REAL_CONST(1.0000000), REAL_CONST(1.0000000), REAL_CONST(1.0000000), REAL_CONST(1.0000000), REAL_CONST(1.0000000) },
{ REAL_CONST(1.1220021), REAL_CONST(1.1220021), REAL_CONST(1.2589312), REAL_CONST(1.2589312), REAL_CONST(1.2589312) },
{ REAL_CONST(1.2589312), REAL_CONST(1.2589312), REAL_CONST(1.5849090), REAL_CONST(1.7783016), REAL_CONST(1.7783016) },
{ REAL_CONST(1.4125481), REAL_CONST(1.5849090), REAL_CONST(1.9952921), REAL_CONST(2.8184461), REAL_CONST(3.1623565) },
{ REAL_CONST(1.5849090), REAL_CONST(1.9952922), REAL_CONST(2.8184461), REAL_CONST(4.4669806), REAL_CONST(5.6232337) },
{ REAL_CONST(1.7783016), REAL_CONST(2.5119365), REAL_CONST(4.4669806), REAL_CONST(7.9430881), REAL_CONST(11.219994) },
{ REAL_CONST(1.9952921), REAL_CONST(3.5482312), REAL_CONST(7.0792671), REAL_CONST(14.125206), REAL_CONST(25.118876) },
{ REAL_CONST(2.5119365), REAL_CONST(5.0116998), REAL_CONST(11.219994), REAL_CONST(25.118876), REAL_CONST(56.235140) }
};
/* 2^(-pan_quant[x][y] */
static const real_t pan_pow_2_neg[8][5] = {
{ REAL_CONST(1), REAL_CONST(1), REAL_CONST(1), REAL_CONST(1), REAL_CONST(1) },
{ REAL_CONST(0.8912487), REAL_CONST(0.8912487), REAL_CONST(0.7943242), REAL_CONST(0.7943242), REAL_CONST(0.7943242) },
{ REAL_CONST(0.7943242), REAL_CONST(0.7943242), REAL_CONST(0.6309511), REAL_CONST(0.5623344), REAL_CONST(0.5623344) },
{ REAL_CONST(0.7079405), REAL_CONST(0.6309511), REAL_CONST(0.5011797), REAL_CONST(0.3548054), REAL_CONST(0.3162199) },
{ REAL_CONST(0.6309511), REAL_CONST(0.5011797), REAL_CONST(0.3548054), REAL_CONST(0.2238649), REAL_CONST(0.1778336) },
{ REAL_CONST(0.5623343), REAL_CONST(0.3980992), REAL_CONST(0.2238649), REAL_CONST(0.1258956), REAL_CONST(0.0891266) },
{ REAL_CONST(0.5011797), REAL_CONST(0.2818306), REAL_CONST(0.1412576), REAL_CONST(0.0707954), REAL_CONST(0.0398107) },
{ REAL_CONST(0.3980992), REAL_CONST(0.1995331), REAL_CONST(0.0891267), REAL_CONST(0.0398107), REAL_CONST(0.0177825) }
};
/* 2^(pan_quant[x][y]/30) */
static const real_t pan_pow_2_30_pos[8][5] = {
{ COEF_CONST(1), COEF_CONST(1), COEF_CONST(1), COEF_CONST(1), COEF_CONST(1) },
{ COEF_CONST(1.003845098), COEF_CONST(1.003845098), COEF_CONST(1.007704982), COEF_CONST(1.007704982), COEF_CONST(1.007704982) },
{ COEF_CONST(1.007704982), COEF_CONST(1.007704982), COEF_CONST(1.01546933), COEF_CONST(1.019373909), COEF_CONST(1.019373909) },
{ COEF_CONST(1.011579706), COEF_CONST(1.01546933), COEF_CONST(1.023293502), COEF_CONST(1.035142941), COEF_CONST(1.039123167) },
{ COEF_CONST(1.01546933), COEF_CONST(1.023293502), COEF_CONST(1.035142941), COEF_CONST(1.051155908), COEF_CONST(1.059252598) },
{ COEF_CONST(1.019373909), COEF_CONST(1.03117796), COEF_CONST(1.051155908), COEF_CONST(1.071518432), COEF_CONST(1.0839263) },
{ COEF_CONST(1.023293502), COEF_CONST(1.043118698), COEF_CONST(1.067414119), COEF_CONST(1.092277933), COEF_CONST(1.113439626) },
{ COEF_CONST(1.03117796), COEF_CONST(1.055195268), COEF_CONST(1.0839263), COEF_CONST(1.113439626), COEF_CONST(1.143756546) }
};
/* 2^(-pan_quant[x][y]/30) */
static const real_t pan_pow_2_30_neg[8][5] = {
{ COEF_CONST(1), COEF_CONST(1), COEF_CONST(1), COEF_CONST(1), COEF_CONST(1) },
{ COEF_CONST(0.99616963), COEF_CONST(0.99616963), COEF_CONST(0.992353931), COEF_CONST(0.992353931), COEF_CONST(0.99235393) },
{ COEF_CONST(0.992353931), COEF_CONST(0.992353931), COEF_CONST(0.984766325), COEF_CONST(0.980994305), COEF_CONST(0.980994305) },
{ COEF_CONST(0.988552848), COEF_CONST(0.984766325), COEF_CONST(0.977236734), COEF_CONST(0.966050157), COEF_CONST(0.962349827) },
{ COEF_CONST(0.984766325), COEF_CONST(0.977236734), COEF_CONST(0.966050157), COEF_CONST(0.951333663), COEF_CONST(0.944061881) },
{ COEF_CONST(0.980994305), COEF_CONST(0.969764715), COEF_CONST(0.951333663), COEF_CONST(0.933255062), COEF_CONST(0.922571949) },
{ COEF_CONST(0.977236734), COEF_CONST(0.958663671), COEF_CONST(0.936843519), COEF_CONST(0.915517901), COEF_CONST(0.898117847) },
{ COEF_CONST(0.969764715), COEF_CONST(0.947691892), COEF_CONST(0.922571949), COEF_CONST(0.898117847), COEF_CONST(0.874311936) }
};
static const real_t g_decayslope[MAX_SA_BAND] = {
FRAC_CONST(1), FRAC_CONST(1), FRAC_CONST(1), FRAC_CONST(0.95),FRAC_CONST(0.9), FRAC_CONST(0.85), FRAC_CONST(0.8),
FRAC_CONST(0.75),FRAC_CONST(0.7), FRAC_CONST(0.65),FRAC_CONST(0.6), FRAC_CONST(0.55),FRAC_CONST(0.5), FRAC_CONST(0.45),
FRAC_CONST(0.4), FRAC_CONST(0.35),FRAC_CONST(0.3), FRAC_CONST(0.25),FRAC_CONST(0.2), FRAC_CONST(0.15), FRAC_CONST(0.1),
FRAC_CONST(0.05),FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0),
FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0),
FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0),
FRAC_CONST(0), FRAC_CONST(0), FRAC_CONST(0)
};
static const real_t sa_sqrt_1_minus[8][2] = {
{ FRAC_CONST(1), FRAC_CONST(1) },
{ FRAC_CONST(0.998744206), FRAC_CONST(0.984066644) },
{ FRAC_CONST(0.997504707), FRAC_CONST(0.959473168) },
{ FRAC_CONST(0.995037562), FRAC_CONST(0.894683804) },
{ FRAC_CONST(0.990165638), FRAC_CONST(0.826933317) },
{ FRAC_CONST(0.980663811), FRAC_CONST(0.706312672) },
{ FRAC_CONST(0.962494836), FRAC_CONST(0.45341406) },
{ FRAC_CONST(0.929071574), FRAC_CONST(0) }
};
static const uint8_t sa_freq_scale[9][2] =
{
{ 0, 0},
{ 1, 1},
{ 2, 2},
{ 3, 3},
{ 5, 5},
{ 7, 7},
{10,10},
{13,13},
{46,23}
};
static const uint8_t pan_freq_scale[21] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 18, 22, 26, 32, 64
};
static const uint8_t pan_quant_class[20] =
{
0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 3, 3, 3, 4, 4, 4
};
/* Inverse mapping lookup */
static const uint8_t pan_inv_freq[64] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18,
19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19
};
static const uint8_t sa_inv_freq[MAX_SA_BAND] = {
0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7
};
static const real_t filter_coeff[] =
{
FRAC_CONST(0.65143905754106),
FRAC_CONST(0.56471812200776),
FRAC_CONST(0.48954165955695)
};
static const uint8_t delay_length[][2] =
{
{ 1, 3 }, { 2, 4 }, { 3, 5 }
};
static const real_t delay_fraction[] =
{
FRAC_CONST(0.43), FRAC_CONST(0.75), FRAC_CONST(0.347)
};
static const real_t peak_decay[2] =
{
FRAC_CONST(0.58664621951003), FRAC_CONST(0.76592833836465)
};
static const real_t smooth_coeff[2] =
{
FRAC_CONST(0.6), FRAC_CONST(0.25)
};
/* Please note that these are the same tables as in plain PS */
static const complex_t Q_Fract_allpass_Qmf[][3] = {
{ { FRAC_CONST(0.7804303765), FRAC_CONST(0.6252426505) }, { FRAC_CONST(0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(0.8550928831), FRAC_CONST(0.5184748173) } },
{ { FRAC_CONST(-0.4399392009), FRAC_CONST(0.8980275393) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(-0.0643581524), FRAC_CONST(0.9979268909) } },
{ { FRAC_CONST(-0.9723699093), FRAC_CONST(-0.2334454209) }, { FRAC_CONST(0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(-0.9146071672), FRAC_CONST(0.4043435752) } },
{ { FRAC_CONST(0.0157073960), FRAC_CONST(-0.9998766184) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(-0.7814115286), FRAC_CONST(-0.6240159869) } },
{ { FRAC_CONST(0.9792228341), FRAC_CONST(-0.2027871907) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(0.1920081824), FRAC_CONST(-0.9813933372) } },
{ { FRAC_CONST(0.4115142524), FRAC_CONST(0.9114032984) }, { FRAC_CONST(0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(0.9589683414), FRAC_CONST(-0.2835132182) } },
{ { FRAC_CONST(-0.7996847630), FRAC_CONST(0.6004201174) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(0.6947838664), FRAC_CONST(0.7192186117) } },
{ { FRAC_CONST(-0.7604058385), FRAC_CONST(-0.6494481564) }, { FRAC_CONST(0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(-0.3164770305), FRAC_CONST(0.9486001730) } },
{ { FRAC_CONST(0.4679299891), FRAC_CONST(-0.8837655187) }, { FRAC_CONST(0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(-0.9874414206), FRAC_CONST(0.1579856575) } },
{ { FRAC_CONST(0.9645573497), FRAC_CONST(0.2638732493) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(-0.5966450572), FRAC_CONST(-0.8025052547) } },
{ { FRAC_CONST(-0.0471066870), FRAC_CONST(0.9988898635) }, { FRAC_CONST(0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(0.4357025325), FRAC_CONST(-0.9000906944) } },
{ { FRAC_CONST(-0.9851093888), FRAC_CONST(0.1719288528) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(0.9995546937), FRAC_CONST(-0.0298405960) } },
{ { FRAC_CONST(-0.3826831877), FRAC_CONST(-0.9238796234) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(0.4886211455), FRAC_CONST(0.8724960685) } },
{ { FRAC_CONST(0.8181498647), FRAC_CONST(-0.5750049949) }, { FRAC_CONST(0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(-0.5477093458), FRAC_CONST(0.8366686702) } },
{ { FRAC_CONST(0.7396308780), FRAC_CONST(0.6730127335) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(-0.9951074123), FRAC_CONST(-0.0987988561) } },
{ { FRAC_CONST(-0.4954589605), FRAC_CONST(0.8686313629) }, { FRAC_CONST(0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(-0.3725017905), FRAC_CONST(-0.9280315042) } },
{ { FRAC_CONST(-0.9557929039), FRAC_CONST(-0.2940406799) }, { FRAC_CONST(0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(0.6506417990), FRAC_CONST(-0.7593847513) } },
{ { FRAC_CONST(0.0784594864), FRAC_CONST(-0.9969173074) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(0.9741733670), FRAC_CONST(0.2258014232) } },
{ { FRAC_CONST(0.9900237322), FRAC_CONST(-0.1409008205) }, { FRAC_CONST(0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(0.2502108514), FRAC_CONST(0.9681913853) } },
{ { FRAC_CONST(0.3534744382), FRAC_CONST(0.9354441762) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(-0.7427945137), FRAC_CONST(0.6695194840) } },
{ { FRAC_CONST(-0.8358076215), FRAC_CONST(0.5490224361) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(-0.9370992780), FRAC_CONST(-0.3490629196) } },
{ { FRAC_CONST(-0.7181259394), FRAC_CONST(-0.6959131360) }, { FRAC_CONST(0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(-0.1237744763), FRAC_CONST(-0.9923103452) } },
{ { FRAC_CONST(0.5224990249), FRAC_CONST(-0.8526399136) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(0.8226406574), FRAC_CONST(-0.5685616732) } },
{ { FRAC_CONST(0.9460852146), FRAC_CONST(0.3239179254) }, { FRAC_CONST(0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(0.8844994903), FRAC_CONST(0.4665412009) } },
{ { FRAC_CONST(-0.1097348556), FRAC_CONST(0.9939609170) }, { FRAC_CONST(0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(-0.0047125919), FRAC_CONST(0.9999889135) } },
{ { FRAC_CONST(-0.9939610362), FRAC_CONST(0.1097337380) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(-0.8888573647), FRAC_CONST(0.4581840038) } },
{ { FRAC_CONST(-0.3239168525), FRAC_CONST(-0.9460855722) }, { FRAC_CONST(0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(-0.8172453642), FRAC_CONST(-0.5762898922) } },
{ { FRAC_CONST(0.8526405096), FRAC_CONST(-0.5224980116) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(0.1331215799), FRAC_CONST(-0.9910997152) } },
{ { FRAC_CONST(0.6959123611), FRAC_CONST(0.7181267142) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(0.9403476119), FRAC_CONST(-0.3402152061) } },
{ { FRAC_CONST(-0.5490233898), FRAC_CONST(0.8358070254) }, { FRAC_CONST(0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(0.7364512086), FRAC_CONST(0.6764906645) } },
{ { FRAC_CONST(-0.9354437590), FRAC_CONST(-0.3534754813) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(-0.2593250275), FRAC_CONST(0.9657900929) } },
{ { FRAC_CONST(0.1409019381), FRAC_CONST(-0.9900235534) }, { FRAC_CONST(0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(-0.9762582779), FRAC_CONST(0.2166097313) } },
{ { FRAC_CONST(0.9969173670), FRAC_CONST(-0.0784583688) }, { FRAC_CONST(0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(-0.6434556246), FRAC_CONST(-0.7654833794) } },
{ { FRAC_CONST(0.2940396070), FRAC_CONST(0.9557932615) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(0.3812320232), FRAC_CONST(-0.9244794250) } },
{ { FRAC_CONST(-0.8686318994), FRAC_CONST(0.4954580069) }, { FRAC_CONST(0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(0.9959943891), FRAC_CONST(-0.0894154981) } },
{ { FRAC_CONST(-0.6730118990), FRAC_CONST(-0.7396316528) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(0.5397993922), FRAC_CONST(0.8417937160) } },
{ { FRAC_CONST(0.5750059485), FRAC_CONST(-0.8181492686) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(-0.4968227744), FRAC_CONST(0.8678520322) } },
{ { FRAC_CONST(0.9238792062), FRAC_CONST(0.3826842010) }, { FRAC_CONST(0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(-0.9992290139), FRAC_CONST(-0.0392601527) } },
{ { FRAC_CONST(-0.1719299555), FRAC_CONST(0.9851091504) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(-0.4271997511), FRAC_CONST(-0.9041572809) } },
{ { FRAC_CONST(-0.9988899231), FRAC_CONST(0.0471055657) }, { FRAC_CONST(0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(0.6041822433), FRAC_CONST(-0.7968461514) } },
{ { FRAC_CONST(-0.2638721764), FRAC_CONST(-0.9645576477) }, { FRAC_CONST(0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(0.9859085083), FRAC_CONST(0.1672853529) } },
{ { FRAC_CONST(0.8837660551), FRAC_CONST(-0.4679289758) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(0.3075223565), FRAC_CONST(0.9515408874) } },
{ { FRAC_CONST(0.6494473219), FRAC_CONST(0.7604066133) }, { FRAC_CONST(0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(-0.7015317082), FRAC_CONST(0.7126382589) } },
{ { FRAC_CONST(-0.6004210114), FRAC_CONST(0.7996840477) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(-0.9562535882), FRAC_CONST(-0.2925389707) } },
{ { FRAC_CONST(-0.9114028811), FRAC_CONST(-0.4115152657) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(-0.1827499419), FRAC_CONST(-0.9831594229) } },
{ { FRAC_CONST(0.2027882934), FRAC_CONST(-0.9792225957) }, { FRAC_CONST(0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(0.7872582674), FRAC_CONST(-0.6166234016) } },
{ { FRAC_CONST(0.9998766780), FRAC_CONST(-0.0157062728) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(0.9107555747), FRAC_CONST(0.4129458666) } },
{ { FRAC_CONST(0.2334443331), FRAC_CONST(0.9723701477) }, { FRAC_CONST(0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(0.0549497530), FRAC_CONST(0.9984891415) } },
{ { FRAC_CONST(-0.8980280757), FRAC_CONST(0.4399381876) }, { FRAC_CONST(0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(-0.8599416018), FRAC_CONST(0.5103924870) } },
{ { FRAC_CONST(-0.6252418160), FRAC_CONST(-0.7804310918) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(-0.8501682281), FRAC_CONST(-0.5265110731) } },
{ { FRAC_CONST(0.6252435446), FRAC_CONST(-0.7804297209) }, { FRAC_CONST(0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(0.0737608299), FRAC_CONST(-0.9972759485) } },
{ { FRAC_CONST(0.8980270624), FRAC_CONST(0.4399402142) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(0.9183775187), FRAC_CONST(-0.3957053721) } },
{ { FRAC_CONST(-0.2334465086), FRAC_CONST(0.9723696709) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(0.7754954696), FRAC_CONST(0.6313531399) } },
{ { FRAC_CONST(-0.9998766184), FRAC_CONST(-0.0157085191) }, { FRAC_CONST(0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(-0.2012493610), FRAC_CONST(0.9795400500) } },
{ { FRAC_CONST(-0.2027861029), FRAC_CONST(-0.9792230725) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(-0.9615978599), FRAC_CONST(0.2744622827) } },
{ { FRAC_CONST(0.9114037752), FRAC_CONST(-0.4115132093) }, { FRAC_CONST(0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(-0.6879743338), FRAC_CONST(-0.7257350087) } },
{ { FRAC_CONST(0.6004192233), FRAC_CONST(0.7996854186) }, { FRAC_CONST(0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(0.3254036009), FRAC_CONST(-0.9455752373) } },
{ { FRAC_CONST(-0.6494490504), FRAC_CONST(0.7604051232) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(0.9888865948), FRAC_CONST(-0.1486719251) } },
{ { FRAC_CONST(-0.8837650418), FRAC_CONST(-0.4679309726) }, { FRAC_CONST(0.9238795042), FRAC_CONST(-0.3826834261) }, { FRAC_CONST(0.5890548825), FRAC_CONST(0.8080930114) } },
{ { FRAC_CONST(0.2638743520), FRAC_CONST(-0.9645570517) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(0.9238795042) }, { FRAC_CONST(-0.4441666007), FRAC_CONST(0.8959442377) } },
{ { FRAC_CONST(0.9988898039), FRAC_CONST(0.0471078083) }, { FRAC_CONST(-0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(-0.9997915030), FRAC_CONST(0.0204183888) } },
{ { FRAC_CONST(0.1719277352), FRAC_CONST(0.9851095676) }, { FRAC_CONST(0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(-0.4803760946), FRAC_CONST(-0.8770626187) } },
{ { FRAC_CONST(-0.9238800406), FRAC_CONST(0.3826821446) }, { FRAC_CONST(-0.9238795042), FRAC_CONST(0.3826834261) }, { FRAC_CONST(0.5555707216), FRAC_CONST(-0.8314692974) } },
{ { FRAC_CONST(-0.5750041008), FRAC_CONST(-0.8181505203) }, { FRAC_CONST(0.3826834261), FRAC_CONST(-0.9238795042) }, { FRAC_CONST(0.9941320419), FRAC_CONST(0.1081734300) } }
};
static const complex_t Phi_Fract_Qmf[] = {
{ FRAC_CONST(0.8181497455), FRAC_CONST(0.5750052333) },
{ FRAC_CONST(-0.2638730407), FRAC_CONST(0.9645574093) },
{ FRAC_CONST(-0.9969173074), FRAC_CONST(0.0784590989) },
{ FRAC_CONST(-0.4115143716), FRAC_CONST(-0.9114032984) },
{ FRAC_CONST(0.7181262970), FRAC_CONST(-0.6959127784) },
{ FRAC_CONST(0.8980275989), FRAC_CONST(0.4399391711) },
{ FRAC_CONST(-0.1097343117), FRAC_CONST(0.9939609766) },
{ FRAC_CONST(-0.9723699093), FRAC_CONST(0.2334453613) },
{ FRAC_CONST(-0.5490227938), FRAC_CONST(-0.8358073831) },
{ FRAC_CONST(0.6004202366), FRAC_CONST(-0.7996846437) },
{ FRAC_CONST(0.9557930231), FRAC_CONST(0.2940403223) },
{ FRAC_CONST(0.0471064523), FRAC_CONST(0.9988898635) },
{ FRAC_CONST(-0.9238795042), FRAC_CONST(0.3826834261) },
{ FRAC_CONST(-0.6730124950), FRAC_CONST(-0.7396311164) },
{ FRAC_CONST(0.4679298103), FRAC_CONST(-0.8837656379) },
{ FRAC_CONST(0.9900236726), FRAC_CONST(0.1409012377) },
{ FRAC_CONST(0.2027872950), FRAC_CONST(0.9792228341) },
{ FRAC_CONST(-0.8526401520), FRAC_CONST(0.5224985480) },
{ FRAC_CONST(-0.7804304361), FRAC_CONST(-0.6252426505) },
{ FRAC_CONST(0.3239174187), FRAC_CONST(-0.9460853338) },
{ FRAC_CONST(0.9998766184), FRAC_CONST(-0.0157073177) },
{ FRAC_CONST(0.3534748554), FRAC_CONST(0.9354440570) },
{ FRAC_CONST(-0.7604059577), FRAC_CONST(0.6494480371) },
{ FRAC_CONST(-0.8686315417), FRAC_CONST(-0.4954586625) },
{ FRAC_CONST(0.1719291061), FRAC_CONST(-0.9851093292) },
{ FRAC_CONST(0.9851093292), FRAC_CONST(-0.1719291061) },
{ FRAC_CONST(0.4954586625), FRAC_CONST(0.8686315417) },
{ FRAC_CONST(-0.6494480371), FRAC_CONST(0.7604059577) },
{ FRAC_CONST(-0.9354440570), FRAC_CONST(-0.3534748554) },
{ FRAC_CONST(0.0157073177), FRAC_CONST(-0.9998766184) },
{ FRAC_CONST(0.9460853338), FRAC_CONST(-0.3239174187) },
{ FRAC_CONST(0.6252426505), FRAC_CONST(0.7804304361) },
{ FRAC_CONST(-0.5224985480), FRAC_CONST(0.8526401520) },
{ FRAC_CONST(-0.9792228341), FRAC_CONST(-0.2027872950) },
{ FRAC_CONST(-0.1409012377), FRAC_CONST(-0.9900236726) },
{ FRAC_CONST(0.8837656379), FRAC_CONST(-0.4679298103) },
{ FRAC_CONST(0.7396311164), FRAC_CONST(0.6730124950) },
{ FRAC_CONST(-0.3826834261), FRAC_CONST(0.9238795042) },
{ FRAC_CONST(-0.9988898635), FRAC_CONST(-0.0471064523) },
{ FRAC_CONST(-0.2940403223), FRAC_CONST(-0.9557930231) },
{ FRAC_CONST(0.7996846437), FRAC_CONST(-0.6004202366) },
{ FRAC_CONST(0.8358073831), FRAC_CONST(0.5490227938) },
{ FRAC_CONST(-0.2334453613), FRAC_CONST(0.9723699093) },
{ FRAC_CONST(-0.9939609766), FRAC_CONST(0.1097343117) },
{ FRAC_CONST(-0.4399391711), FRAC_CONST(-0.8980275989) },
{ FRAC_CONST(0.6959127784), FRAC_CONST(-0.7181262970) },
{ FRAC_CONST(0.9114032984), FRAC_CONST(0.4115143716) },
{ FRAC_CONST(-0.0784590989), FRAC_CONST(0.9969173074) },
{ FRAC_CONST(-0.9645574093), FRAC_CONST(0.2638730407) },
{ FRAC_CONST(-0.5750052333), FRAC_CONST(-0.8181497455) },
{ FRAC_CONST(0.5750052333), FRAC_CONST(-0.8181497455) },
{ FRAC_CONST(0.9645574093), FRAC_CONST(0.2638730407) },
{ FRAC_CONST(0.0784590989), FRAC_CONST(0.9969173074) },
{ FRAC_CONST(-0.9114032984), FRAC_CONST(0.4115143716) },
{ FRAC_CONST(-0.6959127784), FRAC_CONST(-0.7181262970) },
{ FRAC_CONST(0.4399391711), FRAC_CONST(-0.8980275989) },
{ FRAC_CONST(0.9939609766), FRAC_CONST(0.1097343117) },
{ FRAC_CONST(0.2334453613), FRAC_CONST(0.9723699093) },
{ FRAC_CONST(-0.8358073831), FRAC_CONST(0.5490227938) },
{ FRAC_CONST(-0.7996846437), FRAC_CONST(-0.6004202366) },
{ FRAC_CONST(0.2940403223), FRAC_CONST(-0.9557930231) },
{ FRAC_CONST(0.9988898635), FRAC_CONST(-0.0471064523) },
{ FRAC_CONST(0.3826834261), FRAC_CONST(0.9238795042) },
{ FRAC_CONST(-0.7396311164), FRAC_CONST(0.6730124950) }
};
/* static function declarations */
static void drm_ps_sa_element(drm_ps_info *ps, bitfile *ld);
static void drm_ps_pan_element(drm_ps_info *ps, bitfile *ld);
static int8_t huff_dec(bitfile *ld, drm_ps_huff_tab huff);
uint16_t drm_ps_data(drm_ps_info *ps, bitfile *ld)
{
uint16_t bits = (uint16_t)faad_get_processed_bits(ld);
ps->drm_ps_data_available = 1;
ps->bs_enable_sa = faad_get1bit(ld);
ps->bs_enable_pan = faad_get1bit(ld);
if (ps->bs_enable_sa)
{
drm_ps_sa_element(ps, ld);
}
if (ps->bs_enable_pan)
{
drm_ps_pan_element(ps, ld);
}
bits = (uint16_t)faad_get_processed_bits(ld) - bits;
return bits;
}
static void drm_ps_sa_element(drm_ps_info *ps, bitfile *ld)
{
drm_ps_huff_tab huff;
uint8_t band;
ps->bs_sa_dt_flag = faad_get1bit(ld);
if (ps->bs_sa_dt_flag)
{
huff = t_huffman_sa;
} else {
huff = f_huffman_sa;
}
for (band = 0; band < DRM_NUM_SA_BANDS; band++)
{
ps->bs_sa_data[band] = huff_dec(ld, huff);
}
}
static void drm_ps_pan_element(drm_ps_info *ps, bitfile *ld)
{
drm_ps_huff_tab huff;
uint8_t band;
ps->bs_pan_dt_flag = faad_get1bit(ld);
if (ps->bs_pan_dt_flag)
{
huff = t_huffman_pan;
} else {
huff = f_huffman_pan;
}
for (band = 0; band < DRM_NUM_PAN_BANDS; band++)
{
ps->bs_pan_data[band] = huff_dec(ld, huff);
}
}
/* binary search huffman decoding */
static int8_t huff_dec(bitfile *ld, drm_ps_huff_tab huff)
{
uint8_t bit;
int16_t index = 0;
while (index >= 0)
{
bit = (uint8_t)faad_get1bit(ld);
index = huff[index][bit];
}
return index + 15;
}
static int8_t sa_delta_clip(drm_ps_info *ps, int8_t i)
{
if (i < 0) {
/* printf(" SAminclip %d", i); */
ps->sa_decode_error = 1;
return 0;
} else if (i > 7) {
/* printf(" SAmaxclip %d", i); */
ps->sa_decode_error = 1;
return 7;
} else
return i;
}
static int8_t pan_delta_clip(drm_ps_info *ps, int8_t i)
{
if (i < -7) {
/* printf(" PANminclip %d", i); */
ps->pan_decode_error = 1;
return -7;
} else if (i > 7) {
/* printf(" PANmaxclip %d", i); */
ps->pan_decode_error = 1;
return 7;
} else
return i;
}
static void drm_ps_delta_decode(drm_ps_info *ps)
{
uint8_t band;
if (ps->bs_enable_sa)
{
if (ps->bs_sa_dt_flag && !ps->g_last_had_sa)
{
for (band = 0; band < DRM_NUM_SA_BANDS; band++)
{
ps->g_prev_sa_index[band] = 0;
}
}
if (ps->bs_sa_dt_flag)
{
ps->g_sa_index[0] = sa_delta_clip(ps, ps->g_prev_sa_index[0]+ps->bs_sa_data[0]);
} else {
ps->g_sa_index[0] = sa_delta_clip(ps,ps->bs_sa_data[0]);
}
for (band = 1; band < DRM_NUM_SA_BANDS; band++)
{
if (ps->bs_sa_dt_flag)
{
ps->g_sa_index[band] = sa_delta_clip(ps, ps->g_prev_sa_index[band] + ps->bs_sa_data[band]);
} else {
ps->g_sa_index[band] = sa_delta_clip(ps, ps->g_sa_index[band-1] + ps->bs_sa_data[band]);
}
}
}
/* An error during SA decoding implies PAN data will be undecodable, too */
/* Also, we don't like on/off switching in PS, so we force to last settings */
if (ps->sa_decode_error) {
ps->pan_decode_error = 1;
ps->bs_enable_pan = ps->g_last_had_pan;
ps->bs_enable_sa = ps->g_last_had_sa;
}
if (ps->bs_enable_sa)
{
if (ps->sa_decode_error) {
for (band = 0; band < DRM_NUM_SA_BANDS; band++)
{
ps->g_sa_index[band] = ps->g_last_good_sa_index[band];
}
} else {
for (band = 0; band < DRM_NUM_SA_BANDS; band++)
{
ps->g_last_good_sa_index[band] = ps->g_sa_index[band];
}
}
}
if (ps->bs_enable_pan)
{
if (ps->bs_pan_dt_flag && !ps->g_last_had_pan)
{
/* The DRM PS spec doesn't say anything about this case. (deltacoded in time without a previous frame)
AAC PS spec you must tread previous frame as 0, so that's what we try.
*/
for (band = 0; band < DRM_NUM_PAN_BANDS; band++)
{
ps->g_prev_pan_index[band] = 0;
}
}
if (ps->bs_pan_dt_flag)
{
ps->g_pan_index[0] = pan_delta_clip(ps, ps->g_prev_pan_index[0]+ps->bs_pan_data[0]);
} else {
ps->g_pan_index[0] = pan_delta_clip(ps, ps->bs_pan_data[0]);
}
for (band = 1; band < DRM_NUM_PAN_BANDS; band++)
{
if (ps->bs_pan_dt_flag)
{
ps->g_pan_index[band] = pan_delta_clip(ps, ps->g_prev_pan_index[band] + ps->bs_pan_data[band]);
} else {
ps->g_pan_index[band] = pan_delta_clip(ps, ps->g_pan_index[band-1] + ps->bs_pan_data[band]);
}
}
if (ps->pan_decode_error) {
for (band = 0; band < DRM_NUM_PAN_BANDS; band++)
{
ps->g_pan_index[band] = ps->g_last_good_pan_index[band];
}
} else {
for (band = 0; band < DRM_NUM_PAN_BANDS; band++)
{
ps->g_last_good_pan_index[band] = ps->g_pan_index[band];
}
}
}
}
static void drm_calc_sa_side_signal(drm_ps_info *ps, qmf_t X[38][64], uint8_t rateselect)
{
uint8_t s, b, k;
complex_t qfrac, tmp0, tmp, in, R0;
real_t peakdiff;
real_t nrg;
real_t power;
real_t transratio;
real_t new_delay_slopes[NUM_OF_LINKS];
uint8_t temp_delay_ser[NUM_OF_LINKS];
complex_t Phi_Fract;
#ifdef FIXED_POINT
uint32_t in_re, in_im;
#endif
for (b = 0; b < sa_freq_scale[DRM_NUM_SA_BANDS][rateselect]; b++)
{
/* set delay indices */
for (k = 0; k < NUM_OF_LINKS; k++)
temp_delay_ser[k] = ps->delay_buf_index_ser[k];
RE(Phi_Fract) = RE(Phi_Fract_Qmf[b]);
IM(Phi_Fract) = IM(Phi_Fract_Qmf[b]);
for (s = 0; s < NUM_OF_SUBSAMPLES; s++)
{
const real_t gamma = REAL_CONST(1.5);
const real_t sigma = REAL_CONST(1.5625);
RE(in) = QMF_RE(X[s][b]);
IM(in) = QMF_IM(X[s][b]);
#ifdef FIXED_POINT
/* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
* meaning that P will be scaled by 2^(-10) compared to floating point version
*/
in_re = ((abs(RE(in))+(1<<(REAL_BITS-1)))>>REAL_BITS);
in_im = ((abs(IM(in))+(1<<(REAL_BITS-1)))>>REAL_BITS);
power = in_re*in_re + in_im*in_im;
#else
power = MUL_R(RE(in),RE(in)) + MUL_R(IM(in),IM(in));
#endif
ps->peakdecay_fast[b] = MUL_F(ps->peakdecay_fast[b], peak_decay[rateselect]);
if (ps->peakdecay_fast[b] < power)
ps->peakdecay_fast[b] = power;
peakdiff = ps->prev_peakdiff[b];
peakdiff += MUL_F((ps->peakdecay_fast[b] - power - ps->prev_peakdiff[b]), smooth_coeff[rateselect]);
ps->prev_peakdiff[b] = peakdiff;
nrg = ps->prev_nrg[b];
nrg += MUL_F((power - ps->prev_nrg[b]), smooth_coeff[rateselect]);
ps->prev_nrg[b] = nrg;
if (MUL_R(peakdiff, gamma) <= nrg) {
transratio = sigma;
} else {
transratio = MUL_R(DIV_R(nrg, MUL_R(peakdiff, gamma)), sigma);
}
for (k = 0; k < NUM_OF_LINKS; k++)
{
new_delay_slopes[k] = MUL_F(g_decayslope[b], filter_coeff[k]);
}
RE(tmp0) = RE(ps->d_buff[0][b]);
IM(tmp0) = IM(ps->d_buff[0][b]);
RE(ps->d_buff[0][b]) = RE(ps->d_buff[1][b]);
IM(ps->d_buff[0][b]) = IM(ps->d_buff[1][b]);
RE(ps->d_buff[1][b]) = RE(in);
IM(ps->d_buff[1][b]) = IM(in);
ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
RE(R0) = RE(tmp);
IM(R0) = IM(tmp);
for (k = 0; k < NUM_OF_LINKS; k++)
{
RE(qfrac) = RE(Q_Fract_allpass_Qmf[b][k]);
IM(qfrac) = IM(Q_Fract_allpass_Qmf[b][k]);
RE(tmp0) = RE(ps->d2_buff[k][temp_delay_ser[k]][b]);
IM(tmp0) = IM(ps->d2_buff[k][temp_delay_ser[k]][b]);
ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(qfrac), IM(qfrac));
RE(tmp) += -MUL_F(new_delay_slopes[k], RE(R0));
IM(tmp) += -MUL_F(new_delay_slopes[k], IM(R0));
RE(ps->d2_buff[k][temp_delay_ser[k]][b]) = RE(R0) + MUL_F(new_delay_slopes[k], RE(tmp));
IM(ps->d2_buff[k][temp_delay_ser[k]][b]) = IM(R0) + MUL_F(new_delay_slopes[k], IM(tmp));
RE(R0) = RE(tmp);
IM(R0) = IM(tmp);
}
QMF_RE(ps->SA[s][b]) = MUL_R(RE(R0), transratio);
QMF_IM(ps->SA[s][b]) = MUL_R(IM(R0), transratio);
for (k = 0; k < NUM_OF_LINKS; k++)
{
if (++temp_delay_ser[k] >= delay_length[k][rateselect])
temp_delay_ser[k] = 0;
}
}
}
for (k = 0; k < NUM_OF_LINKS; k++)
ps->delay_buf_index_ser[k] = temp_delay_ser[k];
}
static void drm_add_ambiance(drm_ps_info *ps, uint8_t rateselect, qmf_t X_left[38][64], qmf_t X_right[38][64])
{
uint8_t s, b, ifreq, qclass;
real_t sa_map[MAX_SA_BAND], sa_dir_map[MAX_SA_BAND], k_sa_map[MAX_SA_BAND], k_sa_dir_map[MAX_SA_BAND];
real_t new_dir_map, new_sa_map;
if (ps->bs_enable_sa)
{
/* Instead of dequantization and mapping, we use an inverse mapping
to look up all the values we need */
for (b = 0; b < sa_freq_scale[DRM_NUM_SA_BANDS][rateselect]; b++)
{
const real_t inv_f_num_of_subsamples = FRAC_CONST(0.03333333333);
ifreq = sa_inv_freq[b];
qclass = (b != 0);
sa_map[b] = sa_quant[ps->g_prev_sa_index[ifreq]][qclass];
new_sa_map = sa_quant[ps->g_sa_index[ifreq]][qclass];
k_sa_map[b] = MUL_F(inv_f_num_of_subsamples, (new_sa_map - sa_map[b]));
sa_dir_map[b] = sa_sqrt_1_minus[ps->g_prev_sa_index[ifreq]][qclass];
new_dir_map = sa_sqrt_1_minus[ps->g_sa_index[ifreq]][qclass];
k_sa_dir_map[b] = MUL_F(inv_f_num_of_subsamples, (new_dir_map - sa_dir_map[b]));
}
for (s = 0; s < NUM_OF_SUBSAMPLES; s++)
{
for (b = 0; b < sa_freq_scale[DRM_NUM_SA_BANDS][rateselect]; b++)
{
QMF_RE(X_right[s][b]) = MUL_F(QMF_RE(X_left[s][b]), sa_dir_map[b]) - MUL_F(QMF_RE(ps->SA[s][b]), sa_map[b]);
QMF_IM(X_right[s][b]) = MUL_F(QMF_IM(X_left[s][b]), sa_dir_map[b]) - MUL_F(QMF_IM(ps->SA[s][b]), sa_map[b]);
QMF_RE(X_left[s][b]) = MUL_F(QMF_RE(X_left[s][b]), sa_dir_map[b]) + MUL_F(QMF_RE(ps->SA[s][b]), sa_map[b]);
QMF_IM(X_left[s][b]) = MUL_F(QMF_IM(X_left[s][b]), sa_dir_map[b]) + MUL_F(QMF_IM(ps->SA[s][b]), sa_map[b]);
sa_map[b] += k_sa_map[b];
sa_dir_map[b] += k_sa_dir_map[b];
}
for (b = sa_freq_scale[DRM_NUM_SA_BANDS][rateselect]; b < NUM_OF_QMF_CHANNELS; b++)
{
QMF_RE(X_right[s][b]) = QMF_RE(X_left[s][b]);
QMF_IM(X_right[s][b]) = QMF_IM(X_left[s][b]);
}
}
}
else {
for (s = 0; s < NUM_OF_SUBSAMPLES; s++)
{
for (b = 0; b < NUM_OF_QMF_CHANNELS; b++)
{
QMF_RE(X_right[s][b]) = QMF_RE(X_left[s][b]);
QMF_IM(X_right[s][b]) = QMF_IM(X_left[s][b]);
}
}
}
}
static void drm_add_pan(drm_ps_info *ps, uint8_t rateselect, qmf_t X_left[38][64], qmf_t X_right[38][64])
{
uint8_t s, b, qclass, ifreq;
real_t tmp, coeff1, coeff2;
real_t pan_base[MAX_PAN_BAND];
real_t pan_delta[MAX_PAN_BAND];
qmf_t temp_l, temp_r;
if (ps->bs_enable_pan)
{
for (b = 0; b < NUM_OF_QMF_CHANNELS; b++)
{
/* Instead of dequantization, 20->64 mapping and 2^G(x,y) we do an
inverse mapping 64->20 and look up the 2^G(x,y) values directly */
ifreq = pan_inv_freq[b];
qclass = pan_quant_class[ifreq];
if (ps->g_prev_pan_index[ifreq] >= 0)
{
pan_base[b] = pan_pow_2_pos[ps->g_prev_pan_index[ifreq]][qclass];
} else {
pan_base[b] = pan_pow_2_neg[-ps->g_prev_pan_index[ifreq]][qclass];
}
/* 2^((a-b)/30) = 2^(a/30) * 1/(2^(b/30)) */
/* a en b can be negative so we may need to inverse parts */
if (ps->g_pan_index[ifreq] >= 0)
{
if (ps->g_prev_pan_index[ifreq] >= 0)
{
pan_delta[b] = MUL_C(pan_pow_2_30_pos[ps->g_pan_index[ifreq]][qclass],
pan_pow_2_30_neg[ps->g_prev_pan_index[ifreq]][qclass]);
} else {
pan_delta[b] = MUL_C(pan_pow_2_30_pos[ps->g_pan_index[ifreq]][qclass],
pan_pow_2_30_pos[-ps->g_prev_pan_index[ifreq]][qclass]);
}
} else {
if (ps->g_prev_pan_index[ifreq] >= 0)
{
pan_delta[b] = MUL_C(pan_pow_2_30_neg[-ps->g_pan_index[ifreq]][qclass],
pan_pow_2_30_neg[ps->g_prev_pan_index[ifreq]][qclass]);
} else {
pan_delta[b] = MUL_C(pan_pow_2_30_neg[-ps->g_pan_index[ifreq]][qclass],
pan_pow_2_30_pos[-ps->g_prev_pan_index[ifreq]][qclass]);
}
}
}
for (s = 0; s < NUM_OF_SUBSAMPLES; s++)
{
/* PAN always uses all 64 channels */
for (b = 0; b < NUM_OF_QMF_CHANNELS; b++)
{
tmp = pan_base[b];
coeff2 = DIV_R(REAL_CONST(2.0), (REAL_CONST(1.0) + tmp));
coeff1 = MUL_R(coeff2, tmp);
QMF_RE(temp_l) = QMF_RE(X_left[s][b]);
QMF_IM(temp_l) = QMF_IM(X_left[s][b]);
QMF_RE(temp_r) = QMF_RE(X_right[s][b]);
QMF_IM(temp_r) = QMF_IM(X_right[s][b]);
QMF_RE(X_left[s][b]) = MUL_R(QMF_RE(temp_l), coeff1);
QMF_IM(X_left[s][b]) = MUL_R(QMF_IM(temp_l), coeff1);
QMF_RE(X_right[s][b]) = MUL_R(QMF_RE(temp_r), coeff2);
QMF_IM(X_right[s][b]) = MUL_R(QMF_IM(temp_r), coeff2);
/* 2^(a+k*b) = 2^a * 2^b * ... * 2^b */
/* ^^^^^^^^^^^^^^^ k times */
pan_base[b] = MUL_C(pan_base[b], pan_delta[b]);
}
}
}
}
drm_ps_info *drm_ps_init(void)
{
drm_ps_info *ps = (drm_ps_info*)faad_malloc(sizeof(drm_ps_info));
memset(ps, 0, sizeof(drm_ps_info));
return ps;
}
void drm_ps_free(drm_ps_info *ps)
{
faad_free(ps);
}
/* main DRM PS decoding function */
uint8_t drm_ps_decode(drm_ps_info *ps, uint8_t guess, uint32_t samplerate, qmf_t X_left[38][64], qmf_t X_right[38][64])
{
uint8_t rateselect = (samplerate >= 24000);
if (ps == NULL)
{
memcpy(X_right, X_left, sizeof(qmf_t)*30*64);
return 0;
}
if (!ps->drm_ps_data_available && !guess)
{
memcpy(X_right, X_left, sizeof(qmf_t)*30*64);
memset(ps->g_prev_sa_index, 0, sizeof(ps->g_prev_sa_index));
memset(ps->g_prev_pan_index, 0, sizeof(ps->g_prev_pan_index));
return 0;
}
/* if SBR CRC doesn't match out, we can assume decode errors to start with,
and we'll guess what the parameters should be */
if (!guess)
{
ps->sa_decode_error = 0;
ps->pan_decode_error = 0;
drm_ps_delta_decode(ps);
} else
{
ps->sa_decode_error = 1;
ps->pan_decode_error = 1;
/* don't even bother decoding */
}
ps->drm_ps_data_available = 0;
drm_calc_sa_side_signal(ps, X_left, rateselect);
drm_add_ambiance(ps, rateselect, X_left, X_right);
if (ps->bs_enable_sa)
{
ps->g_last_had_sa = 1;
memcpy(ps->g_prev_sa_index, ps->g_sa_index, sizeof(int8_t) * DRM_NUM_SA_BANDS);
} else {
ps->g_last_had_sa = 0;
}
if (ps->bs_enable_pan)
{
drm_add_pan(ps, rateselect, X_left, X_right);
ps->g_last_had_pan = 1;
memcpy(ps->g_prev_pan_index, ps->g_pan_index, sizeof(int8_t) * DRM_NUM_PAN_BANDS);
} else {
ps->g_last_had_pan = 0;
}
return 0;
}
#endif