mirror of
https://github.com/mpv-player/mpv
synced 2025-01-15 11:31:02 +00:00
d3f8d82279
With hwdec copy modes, mp_image_copy_attributes() is used to transfer metadata other than the image data when copying the image from the hardware surface. It didn't copy the closed caption data. Fix this. This makes closed captions in copy mode work. Fixes: #6376
1044 lines
36 KiB
C
1044 lines
36 KiB
C
/*
|
|
* This file is part of mpv.
|
|
*
|
|
* mpv is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* mpv is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <pthread.h>
|
|
#include <assert.h>
|
|
|
|
#include <libavutil/mem.h>
|
|
#include <libavutil/common.h>
|
|
#include <libavutil/bswap.h>
|
|
#include <libavutil/hwcontext.h>
|
|
#include <libavutil/rational.h>
|
|
#include <libavcodec/avcodec.h>
|
|
|
|
#if LIBAVUTIL_VERSION_MICRO >= 100
|
|
#include <libavutil/mastering_display_metadata.h>
|
|
#endif
|
|
|
|
#include "mpv_talloc.h"
|
|
|
|
#include "config.h"
|
|
#include "common/av_common.h"
|
|
#include "common/common.h"
|
|
#include "hwdec.h"
|
|
#include "mp_image.h"
|
|
#include "sws_utils.h"
|
|
#include "fmt-conversion.h"
|
|
|
|
// Determine strides, plane sizes, and total required size for an image
|
|
// allocation. Returns total size on success, <0 on error. Unused planes
|
|
// have out_stride/out_plane_size to 0, and out_plane_offset set to -1 up
|
|
// until MP_MAX_PLANES-1.
|
|
static int mp_image_layout(int imgfmt, int w, int h, int stride_align,
|
|
int out_stride[MP_MAX_PLANES],
|
|
int out_plane_offset[MP_MAX_PLANES],
|
|
int out_plane_size[MP_MAX_PLANES])
|
|
{
|
|
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(imgfmt);
|
|
struct mp_image_params params = {.imgfmt = imgfmt, .w = w, .h = h};
|
|
|
|
if (!mp_image_params_valid(¶ms) || desc.flags & MP_IMGFLAG_HWACCEL)
|
|
return -1;
|
|
|
|
// Note: for non-mod-2 4:2:0 YUV frames, we have to allocate an additional
|
|
// top/right border. This is needed for correct handling of such
|
|
// images in filter and VO code (e.g. vo_vdpau or vo_gpu).
|
|
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
int alloc_w = mp_chroma_div_up(w, desc.xs[n]);
|
|
int alloc_h = MP_ALIGN_UP(h, 32) >> desc.ys[n];
|
|
int line_bytes = (alloc_w * desc.bpp[n] + 7) / 8;
|
|
out_stride[n] = MP_ALIGN_UP(line_bytes, stride_align);
|
|
// also align to a multiple of desc.bytes[n]
|
|
while (desc.bytes[n] && out_stride[n] % desc.bytes[n])
|
|
out_stride[n] += stride_align;
|
|
out_plane_size[n] = out_stride[n] * alloc_h;
|
|
}
|
|
if (desc.flags & MP_IMGFLAG_PAL)
|
|
out_plane_size[1] = AVPALETTE_SIZE;
|
|
|
|
int sum = 0;
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
out_plane_offset[n] = out_plane_size[n] ? sum : -1;
|
|
sum += out_plane_size[n];
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
// Return the total size needed for an image allocation of the given
|
|
// configuration (imgfmt, w, h must be set). Returns -1 on error.
|
|
// Assumes the allocation is already aligned on stride_align (otherwise you
|
|
// need to add padding yourself).
|
|
int mp_image_get_alloc_size(int imgfmt, int w, int h, int stride_align)
|
|
{
|
|
int stride[MP_MAX_PLANES];
|
|
int plane_offset[MP_MAX_PLANES];
|
|
int plane_size[MP_MAX_PLANES];
|
|
return mp_image_layout(imgfmt, w, h, stride_align, stride, plane_offset,
|
|
plane_size);
|
|
}
|
|
|
|
// Fill the mpi->planes and mpi->stride fields of the given mpi with data
|
|
// from buffer according to the mpi's w/h/imgfmt fields. See mp_image_from_buffer
|
|
// aboud remarks how to allocate/use buffer/buffer_size.
|
|
// This does not free the data. You are expected to setup refcounting by
|
|
// setting mp_image.bufs before or after this function is called.
|
|
// Returns true on success, false on failure.
|
|
static bool mp_image_fill_alloc(struct mp_image *mpi, int stride_align,
|
|
void *buffer, int buffer_size)
|
|
{
|
|
int stride[MP_MAX_PLANES];
|
|
int plane_offset[MP_MAX_PLANES];
|
|
int plane_size[MP_MAX_PLANES];
|
|
int size = mp_image_layout(mpi->imgfmt, mpi->w, mpi->h, stride_align,
|
|
stride, plane_offset, plane_size);
|
|
if (size < 0 || size > buffer_size)
|
|
return false;
|
|
|
|
int align = MP_ALIGN_UP((uintptr_t)buffer, stride_align) - (uintptr_t)buffer;
|
|
if (buffer_size - size < align)
|
|
return false;
|
|
uint8_t *s = buffer;
|
|
s += align;
|
|
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
mpi->planes[n] = plane_offset[n] >= 0 ? s + plane_offset[n] : NULL;
|
|
mpi->stride[n] = stride[n];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Create a mp_image from the provided buffer. The mp_image is filled according
|
|
// to the imgfmt/w/h parameters, and respecting the stride_align parameter to
|
|
// align the plane start pointers and strides. Once the last reference to the
|
|
// returned image is destroyed, free(free_opaque, buffer) is called. (Be aware
|
|
// that this can happen from any thread.)
|
|
// The allocated size of buffer must be given by buffer_size. buffer_size should
|
|
// be at least the value returned by mp_image_get_alloc_size(). If buffer is not
|
|
// already aligned to stride_align, the function will attempt to align the
|
|
// pointer itself by incrementing the buffer pointer until ther alignment is
|
|
// achieved (if buffer_size is not large enough to allow aligning the buffer
|
|
// safely, the function fails). To be safe, you may want to overallocate the
|
|
// buffer by stride_align bytes, and include the overallocation in buffer_size.
|
|
// Returns NULL on failure. On failure, the free() callback is not called.
|
|
struct mp_image *mp_image_from_buffer(int imgfmt, int w, int h, int stride_align,
|
|
uint8_t *buffer, int buffer_size,
|
|
void *free_opaque,
|
|
void (*free)(void *opaque, uint8_t *data))
|
|
{
|
|
struct mp_image *mpi = mp_image_new_dummy_ref(NULL);
|
|
mp_image_setfmt(mpi, imgfmt);
|
|
mp_image_set_size(mpi, w, h);
|
|
|
|
if (!mp_image_fill_alloc(mpi, stride_align, buffer, buffer_size))
|
|
goto fail;
|
|
|
|
mpi->bufs[0] = av_buffer_create(buffer, buffer_size, free, free_opaque, 0);
|
|
if (!mpi->bufs[0])
|
|
goto fail;
|
|
|
|
return mpi;
|
|
|
|
fail:
|
|
talloc_free(mpi);
|
|
return NULL;
|
|
}
|
|
|
|
static bool mp_image_alloc_planes(struct mp_image *mpi)
|
|
{
|
|
assert(!mpi->planes[0]);
|
|
assert(!mpi->bufs[0]);
|
|
|
|
int align = MP_IMAGE_BYTE_ALIGN;
|
|
|
|
int size = mp_image_get_alloc_size(mpi->imgfmt, mpi->w, mpi->h, align);
|
|
if (size < 0)
|
|
return false;
|
|
|
|
// Note: mp_image_pool assumes this creates only 1 AVBufferRef.
|
|
mpi->bufs[0] = av_buffer_alloc(size + align);
|
|
if (!mpi->bufs[0])
|
|
return false;
|
|
|
|
if (!mp_image_fill_alloc(mpi, align, mpi->bufs[0]->data, mpi->bufs[0]->size)) {
|
|
av_buffer_unref(&mpi->bufs[0]);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void mp_image_setfmt(struct mp_image *mpi, int out_fmt)
|
|
{
|
|
struct mp_image_params params = mpi->params;
|
|
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
|
|
params.imgfmt = fmt.id;
|
|
mpi->fmt = fmt;
|
|
mpi->imgfmt = fmt.id;
|
|
mpi->num_planes = fmt.num_planes;
|
|
mpi->params = params;
|
|
}
|
|
|
|
static void mp_image_destructor(void *ptr)
|
|
{
|
|
mp_image_t *mpi = ptr;
|
|
for (int p = 0; p < MP_MAX_PLANES; p++)
|
|
av_buffer_unref(&mpi->bufs[p]);
|
|
av_buffer_unref(&mpi->hwctx);
|
|
av_buffer_unref(&mpi->icc_profile);
|
|
av_buffer_unref(&mpi->a53_cc);
|
|
for (int n = 0; n < mpi->num_ff_side_data; n++)
|
|
av_buffer_unref(&mpi->ff_side_data[n].buf);
|
|
talloc_free(mpi->ff_side_data);
|
|
}
|
|
|
|
int mp_chroma_div_up(int size, int shift)
|
|
{
|
|
return (size + (1 << shift) - 1) >> shift;
|
|
}
|
|
|
|
// Return the storage width in pixels of the given plane.
|
|
int mp_image_plane_w(struct mp_image *mpi, int plane)
|
|
{
|
|
return mp_chroma_div_up(mpi->w, mpi->fmt.xs[plane]);
|
|
}
|
|
|
|
// Return the storage height in pixels of the given plane.
|
|
int mp_image_plane_h(struct mp_image *mpi, int plane)
|
|
{
|
|
return mp_chroma_div_up(mpi->h, mpi->fmt.ys[plane]);
|
|
}
|
|
|
|
// Caller has to make sure this doesn't exceed the allocated plane data/strides.
|
|
void mp_image_set_size(struct mp_image *mpi, int w, int h)
|
|
{
|
|
assert(w >= 0 && h >= 0);
|
|
mpi->w = mpi->params.w = w;
|
|
mpi->h = mpi->params.h = h;
|
|
}
|
|
|
|
void mp_image_set_params(struct mp_image *image,
|
|
const struct mp_image_params *params)
|
|
{
|
|
// possibly initialize other stuff
|
|
mp_image_setfmt(image, params->imgfmt);
|
|
mp_image_set_size(image, params->w, params->h);
|
|
image->params = *params;
|
|
}
|
|
|
|
struct mp_image *mp_image_alloc(int imgfmt, int w, int h)
|
|
{
|
|
struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
|
|
talloc_set_destructor(mpi, mp_image_destructor);
|
|
|
|
mp_image_set_size(mpi, w, h);
|
|
mp_image_setfmt(mpi, imgfmt);
|
|
if (!mp_image_alloc_planes(mpi)) {
|
|
talloc_free(mpi);
|
|
return NULL;
|
|
}
|
|
return mpi;
|
|
}
|
|
|
|
int mp_image_approx_byte_size(struct mp_image *img)
|
|
{
|
|
int total = sizeof(*img);
|
|
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
struct AVBufferRef *buf = img->bufs[n];
|
|
if (buf)
|
|
total += buf->size;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
struct mp_image *mp_image_new_copy(struct mp_image *img)
|
|
{
|
|
struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
|
|
if (!new)
|
|
return NULL;
|
|
mp_image_copy(new, img);
|
|
mp_image_copy_attributes(new, img);
|
|
return new;
|
|
}
|
|
|
|
// Make dst take over the image data of src, and free src.
|
|
// This is basically a safe version of *dst = *src; free(src);
|
|
// Only works with ref-counted images, and can't change image size/format.
|
|
void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
|
|
assert(dst->bufs[0] && src->bufs[0]);
|
|
|
|
mp_image_destructor(dst); // unref old
|
|
talloc_free_children(dst);
|
|
|
|
*dst = *src;
|
|
|
|
*src = (struct mp_image){0};
|
|
talloc_free(src);
|
|
}
|
|
|
|
// Unref most data buffer (and clear the data array), but leave other fields
|
|
// allocated. In particular, mp_image.hwctx is preserved.
|
|
void mp_image_unref_data(struct mp_image *img)
|
|
{
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
img->planes[n] = NULL;
|
|
img->stride[n] = 0;
|
|
av_buffer_unref(&img->bufs[n]);
|
|
}
|
|
}
|
|
|
|
static void ref_buffer(bool *ok, AVBufferRef **dst)
|
|
{
|
|
if (*dst) {
|
|
*dst = av_buffer_ref(*dst);
|
|
if (!*dst)
|
|
*ok = false;
|
|
}
|
|
}
|
|
|
|
// Return a new reference to img. The returned reference is owned by the caller,
|
|
// while img is left untouched.
|
|
struct mp_image *mp_image_new_ref(struct mp_image *img)
|
|
{
|
|
if (!img)
|
|
return NULL;
|
|
|
|
if (!img->bufs[0])
|
|
return mp_image_new_copy(img);
|
|
|
|
struct mp_image *new = talloc_ptrtype(NULL, new);
|
|
talloc_set_destructor(new, mp_image_destructor);
|
|
*new = *img;
|
|
|
|
bool ok = true;
|
|
for (int p = 0; p < MP_MAX_PLANES; p++)
|
|
ref_buffer(&ok, &new->bufs[p]);
|
|
|
|
ref_buffer(&ok, &new->hwctx);
|
|
ref_buffer(&ok, &new->icc_profile);
|
|
ref_buffer(&ok, &new->a53_cc);
|
|
|
|
new->ff_side_data = talloc_memdup(NULL, new->ff_side_data,
|
|
new->num_ff_side_data * sizeof(new->ff_side_data[0]));
|
|
for (int n = 0; n < new->num_ff_side_data; n++)
|
|
ref_buffer(&ok, &new->ff_side_data[n].buf);
|
|
|
|
if (ok)
|
|
return new;
|
|
|
|
// Do this after _all_ bufs were changed; we don't want it to free bufs
|
|
// from the original image if this fails.
|
|
talloc_free(new);
|
|
return NULL;
|
|
}
|
|
|
|
struct free_args {
|
|
void *arg;
|
|
void (*free)(void *arg);
|
|
};
|
|
|
|
static void call_free(void *opaque, uint8_t *data)
|
|
{
|
|
struct free_args *args = opaque;
|
|
args->free(args->arg);
|
|
talloc_free(args);
|
|
}
|
|
|
|
// Create a new mp_image based on img, but don't set any buffers.
|
|
// Using this is only valid until the original img is unreferenced (including
|
|
// implicit unreferencing of the data by mp_image_make_writeable()), unless
|
|
// a new reference is set.
|
|
struct mp_image *mp_image_new_dummy_ref(struct mp_image *img)
|
|
{
|
|
struct mp_image *new = talloc_ptrtype(NULL, new);
|
|
talloc_set_destructor(new, mp_image_destructor);
|
|
*new = img ? *img : (struct mp_image){0};
|
|
for (int p = 0; p < MP_MAX_PLANES; p++)
|
|
new->bufs[p] = NULL;
|
|
new->hwctx = NULL;
|
|
new->icc_profile = NULL;
|
|
new->a53_cc = NULL;
|
|
new->num_ff_side_data = 0;
|
|
new->ff_side_data = NULL;
|
|
return new;
|
|
}
|
|
|
|
// Return a reference counted reference to img. If the reference count reaches
|
|
// 0, call free(free_arg). The data passed by img must not be free'd before
|
|
// that. The new reference will be writeable.
|
|
// On allocation failure, unref the frame and return NULL.
|
|
// This is only used for hw decoding; this is important, because libav* expects
|
|
// all plane data to be accounted for by AVBufferRefs.
|
|
struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
|
|
void (*free)(void *arg))
|
|
{
|
|
struct mp_image *new = mp_image_new_dummy_ref(img);
|
|
|
|
struct free_args *args = talloc_ptrtype(NULL, args);
|
|
*args = (struct free_args){free_arg, free};
|
|
new->bufs[0] = av_buffer_create(NULL, 0, call_free, args,
|
|
AV_BUFFER_FLAG_READONLY);
|
|
if (new->bufs[0])
|
|
return new;
|
|
talloc_free(new);
|
|
return NULL;
|
|
}
|
|
|
|
bool mp_image_is_writeable(struct mp_image *img)
|
|
{
|
|
if (!img->bufs[0])
|
|
return true; // not ref-counted => always considered writeable
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
if (!img->bufs[p])
|
|
break;
|
|
if (!av_buffer_is_writable(img->bufs[p]))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Make the image data referenced by img writeable. This allocates new data
|
|
// if the data wasn't already writeable, and img->planes[] and img->stride[]
|
|
// will be set to the copy.
|
|
// Returns success; if false is returned, the image could not be made writeable.
|
|
bool mp_image_make_writeable(struct mp_image *img)
|
|
{
|
|
if (mp_image_is_writeable(img))
|
|
return true;
|
|
|
|
struct mp_image *new = mp_image_new_copy(img);
|
|
if (!new)
|
|
return false;
|
|
mp_image_steal_data(img, new);
|
|
assert(mp_image_is_writeable(img));
|
|
return true;
|
|
}
|
|
|
|
// Helper function: unrefs *p_img, and sets *p_img to a new ref of new_value.
|
|
// Only unrefs *p_img and sets it to NULL if out of memory.
|
|
void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
|
|
{
|
|
if (*p_img != new_value) {
|
|
talloc_free(*p_img);
|
|
*p_img = new_value ? mp_image_new_ref(new_value) : NULL;
|
|
}
|
|
}
|
|
|
|
// Mere helper function (mp_image can be directly free'd with talloc_free)
|
|
void mp_image_unrefp(struct mp_image **p_img)
|
|
{
|
|
talloc_free(*p_img);
|
|
*p_img = NULL;
|
|
}
|
|
|
|
void memcpy_pic(void *dst, const void *src, int bytesPerLine, int height,
|
|
int dstStride, int srcStride)
|
|
{
|
|
if (bytesPerLine == dstStride && dstStride == srcStride && height) {
|
|
if (srcStride < 0) {
|
|
src = (uint8_t*)src + (height - 1) * srcStride;
|
|
dst = (uint8_t*)dst + (height - 1) * dstStride;
|
|
srcStride = -srcStride;
|
|
}
|
|
|
|
memcpy(dst, src, srcStride * (height - 1) + bytesPerLine);
|
|
} else {
|
|
for (int i = 0; i < height; i++) {
|
|
memcpy(dst, src, bytesPerLine);
|
|
src = (uint8_t*)src + srcStride;
|
|
dst = (uint8_t*)dst + dstStride;
|
|
}
|
|
}
|
|
}
|
|
|
|
void mp_image_copy(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
assert(dst->imgfmt == src->imgfmt);
|
|
assert(dst->w == src->w && dst->h == src->h);
|
|
assert(mp_image_is_writeable(dst));
|
|
for (int n = 0; n < dst->num_planes; n++) {
|
|
int line_bytes = (mp_image_plane_w(dst, n) * dst->fmt.bpp[n] + 7) / 8;
|
|
int plane_h = mp_image_plane_h(dst, n);
|
|
memcpy_pic(dst->planes[n], src->planes[n], line_bytes, plane_h,
|
|
dst->stride[n], src->stride[n]);
|
|
}
|
|
if (dst->fmt.flags & MP_IMGFLAG_PAL)
|
|
memcpy(dst->planes[1], src->planes[1], AVPALETTE_SIZE);
|
|
}
|
|
|
|
static enum mp_csp mp_image_params_get_forced_csp(struct mp_image_params *params)
|
|
{
|
|
int imgfmt = params->hw_subfmt ? params->hw_subfmt : params->imgfmt;
|
|
return mp_imgfmt_get_forced_csp(imgfmt);
|
|
}
|
|
|
|
static void assign_bufref(AVBufferRef **dst, AVBufferRef *new)
|
|
{
|
|
av_buffer_unref(dst);
|
|
if (new) {
|
|
*dst = av_buffer_ref(new);
|
|
MP_HANDLE_OOM(*dst);
|
|
}
|
|
}
|
|
|
|
void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
|
|
{
|
|
dst->pict_type = src->pict_type;
|
|
dst->fields = src->fields;
|
|
dst->pts = src->pts;
|
|
dst->dts = src->dts;
|
|
dst->pkt_duration = src->pkt_duration;
|
|
dst->params.rotate = src->params.rotate;
|
|
dst->params.stereo3d = src->params.stereo3d;
|
|
dst->params.p_w = src->params.p_w;
|
|
dst->params.p_h = src->params.p_h;
|
|
dst->params.color = src->params.color;
|
|
dst->params.chroma_location = src->params.chroma_location;
|
|
dst->nominal_fps = src->nominal_fps;
|
|
// ensure colorspace consistency
|
|
if (mp_image_params_get_forced_csp(&dst->params) !=
|
|
mp_image_params_get_forced_csp(&src->params))
|
|
dst->params.color = (struct mp_colorspace){0};
|
|
if ((dst->fmt.flags & MP_IMGFLAG_PAL) && (src->fmt.flags & MP_IMGFLAG_PAL)) {
|
|
if (dst->planes[1] && src->planes[1]) {
|
|
if (mp_image_make_writeable(dst))
|
|
memcpy(dst->planes[1], src->planes[1], AVPALETTE_SIZE);
|
|
}
|
|
}
|
|
assign_bufref(&dst->icc_profile, src->icc_profile);
|
|
assign_bufref(&dst->a53_cc, src->a53_cc);
|
|
}
|
|
|
|
// Crop the given image to (x0, y0)-(x1, y1) (bottom/right border exclusive)
|
|
// x0/y0 must be naturally aligned.
|
|
void mp_image_crop(struct mp_image *img, int x0, int y0, int x1, int y1)
|
|
{
|
|
assert(x0 >= 0 && y0 >= 0);
|
|
assert(x0 <= x1 && y0 <= y1);
|
|
assert(x1 <= img->w && y1 <= img->h);
|
|
assert(!(x0 & (img->fmt.align_x - 1)));
|
|
assert(!(y0 & (img->fmt.align_y - 1)));
|
|
|
|
for (int p = 0; p < img->num_planes; ++p) {
|
|
img->planes[p] += (y0 >> img->fmt.ys[p]) * img->stride[p] +
|
|
(x0 >> img->fmt.xs[p]) * img->fmt.bpp[p] / 8;
|
|
}
|
|
mp_image_set_size(img, x1 - x0, y1 - y0);
|
|
}
|
|
|
|
void mp_image_crop_rc(struct mp_image *img, struct mp_rect rc)
|
|
{
|
|
mp_image_crop(img, rc.x0, rc.y0, rc.x1, rc.y1);
|
|
}
|
|
|
|
// Bottom/right border is allowed not to be aligned, but it might implicitly
|
|
// overwrite pixel data until the alignment (align_x/align_y) is reached.
|
|
void mp_image_clear(struct mp_image *img, int x0, int y0, int x1, int y1)
|
|
{
|
|
assert(x0 >= 0 && y0 >= 0);
|
|
assert(x0 <= x1 && y0 <= y1);
|
|
assert(x1 <= img->w && y1 <= img->h);
|
|
assert(!(x0 & (img->fmt.align_x - 1)));
|
|
assert(!(y0 & (img->fmt.align_y - 1)));
|
|
|
|
struct mp_image area = *img;
|
|
mp_image_crop(&area, x0, y0, x1, y1);
|
|
|
|
uint32_t plane_clear[MP_MAX_PLANES] = {0};
|
|
|
|
if (area.imgfmt == IMGFMT_UYVY) {
|
|
plane_clear[0] = av_le2ne16(0x0080);
|
|
} else if (area.fmt.flags & MP_IMGFLAG_YUV_NV) {
|
|
plane_clear[1] = 0x8080;
|
|
} else if (area.fmt.flags & MP_IMGFLAG_YUV_P) {
|
|
uint16_t chroma_clear = (1 << area.fmt.plane_bits) / 2;
|
|
if (!(area.fmt.flags & MP_IMGFLAG_NE))
|
|
chroma_clear = av_bswap16(chroma_clear);
|
|
if (area.num_planes > 2)
|
|
plane_clear[1] = plane_clear[2] = chroma_clear;
|
|
}
|
|
|
|
for (int p = 0; p < area.num_planes; p++) {
|
|
int bpp = area.fmt.bpp[p];
|
|
int bytes = (mp_image_plane_w(&area, p) * bpp + 7) / 8;
|
|
if (bpp <= 8) {
|
|
memset_pic(area.planes[p], plane_clear[p], bytes,
|
|
mp_image_plane_h(&area, p), area.stride[p]);
|
|
} else {
|
|
memset16_pic(area.planes[p], plane_clear[p], (bytes + 1) / 2,
|
|
mp_image_plane_h(&area, p), area.stride[p]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void mp_image_vflip(struct mp_image *img)
|
|
{
|
|
for (int p = 0; p < img->num_planes; p++) {
|
|
int plane_h = mp_image_plane_h(img, p);
|
|
img->planes[p] = img->planes[p] + img->stride[p] * (plane_h - 1);
|
|
img->stride[p] = -img->stride[p];
|
|
}
|
|
}
|
|
|
|
// Display size derived from image size and pixel aspect ratio.
|
|
void mp_image_params_get_dsize(const struct mp_image_params *p,
|
|
int *d_w, int *d_h)
|
|
{
|
|
*d_w = p->w;
|
|
*d_h = p->h;
|
|
if (p->p_w > p->p_h && p->p_h >= 1)
|
|
*d_w = MPCLAMP(*d_w * (int64_t)p->p_w / p->p_h, 1, INT_MAX);
|
|
if (p->p_h > p->p_w && p->p_w >= 1)
|
|
*d_h = MPCLAMP(*d_h * (int64_t)p->p_h / p->p_w, 1, INT_MAX);
|
|
}
|
|
|
|
void mp_image_params_set_dsize(struct mp_image_params *p, int d_w, int d_h)
|
|
{
|
|
AVRational ds = av_div_q((AVRational){d_w, d_h}, (AVRational){p->w, p->h});
|
|
p->p_w = ds.num;
|
|
p->p_h = ds.den;
|
|
}
|
|
|
|
char *mp_image_params_to_str_buf(char *b, size_t bs,
|
|
const struct mp_image_params *p)
|
|
{
|
|
if (p && p->imgfmt) {
|
|
snprintf(b, bs, "%dx%d", p->w, p->h);
|
|
if (p->p_w != p->p_h || !p->p_w)
|
|
mp_snprintf_cat(b, bs, " [%d:%d]", p->p_w, p->p_h);
|
|
mp_snprintf_cat(b, bs, " %s", mp_imgfmt_to_name(p->imgfmt));
|
|
if (p->hw_subfmt)
|
|
mp_snprintf_cat(b, bs, "[%s]", mp_imgfmt_to_name(p->hw_subfmt));
|
|
mp_snprintf_cat(b, bs, " %s/%s/%s/%s/%s",
|
|
m_opt_choice_str(mp_csp_names, p->color.space),
|
|
m_opt_choice_str(mp_csp_prim_names, p->color.primaries),
|
|
m_opt_choice_str(mp_csp_trc_names, p->color.gamma),
|
|
m_opt_choice_str(mp_csp_levels_names, p->color.levels),
|
|
m_opt_choice_str(mp_csp_light_names, p->color.light));
|
|
if (p->color.sig_peak)
|
|
mp_snprintf_cat(b, bs, " SP=%f", p->color.sig_peak);
|
|
mp_snprintf_cat(b, bs, " CL=%s",
|
|
m_opt_choice_str(mp_chroma_names, p->chroma_location));
|
|
if (p->rotate)
|
|
mp_snprintf_cat(b, bs, " rot=%d", p->rotate);
|
|
if (p->stereo3d > 0) {
|
|
mp_snprintf_cat(b, bs, " stereo=%s",
|
|
MP_STEREO3D_NAME_DEF(p->stereo3d, "?"));
|
|
}
|
|
} else {
|
|
snprintf(b, bs, "???");
|
|
}
|
|
return b;
|
|
}
|
|
|
|
// Return whether the image parameters are valid.
|
|
// Some non-essential fields are allowed to be unset (like colorspace flags).
|
|
bool mp_image_params_valid(const struct mp_image_params *p)
|
|
{
|
|
// av_image_check_size has similar checks and triggers around 16000*16000
|
|
// It's mostly needed to deal with the fact that offsets are sometimes
|
|
// ints. We also should (for now) do the same as FFmpeg, to be sure large
|
|
// images don't crash with libswscale or when wrapping with AVFrame and
|
|
// passing the result to filters.
|
|
if (p->w <= 0 || p->h <= 0 || (p->w + 128LL) * (p->h + 128LL) >= INT_MAX / 8)
|
|
return false;
|
|
|
|
if (p->p_w < 0 || p->p_h < 0)
|
|
return false;
|
|
|
|
if (p->rotate < 0 || p->rotate >= 360)
|
|
return false;
|
|
|
|
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(p->imgfmt);
|
|
if (!desc.id)
|
|
return false;
|
|
|
|
if (p->hw_subfmt && !(desc.flags & MP_IMGFLAG_HWACCEL))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool mp_image_params_equal(const struct mp_image_params *p1,
|
|
const struct mp_image_params *p2)
|
|
{
|
|
return p1->imgfmt == p2->imgfmt &&
|
|
p1->hw_subfmt == p2->hw_subfmt &&
|
|
p1->w == p2->w && p1->h == p2->h &&
|
|
p1->p_w == p2->p_w && p1->p_h == p2->p_h &&
|
|
mp_colorspace_equal(p1->color, p2->color) &&
|
|
p1->chroma_location == p2->chroma_location &&
|
|
p1->rotate == p2->rotate &&
|
|
p1->stereo3d == p2->stereo3d;
|
|
}
|
|
|
|
// Set most image parameters, but not image format or size.
|
|
// Display size is used to set the PAR.
|
|
void mp_image_set_attributes(struct mp_image *image,
|
|
const struct mp_image_params *params)
|
|
{
|
|
struct mp_image_params nparams = *params;
|
|
nparams.imgfmt = image->imgfmt;
|
|
nparams.w = image->w;
|
|
nparams.h = image->h;
|
|
if (nparams.imgfmt != params->imgfmt)
|
|
nparams.color = (struct mp_colorspace){0};
|
|
mp_image_set_params(image, &nparams);
|
|
}
|
|
|
|
// If details like params->colorspace/colorlevels are missing, guess them from
|
|
// the other settings. Also, even if they are set, make them consistent with
|
|
// the colorspace as implied by the pixel format.
|
|
void mp_image_params_guess_csp(struct mp_image_params *params)
|
|
{
|
|
enum mp_csp forced_csp = mp_image_params_get_forced_csp(params);
|
|
if (forced_csp == MP_CSP_AUTO) { // YUV/other
|
|
if (params->color.space != MP_CSP_BT_601 &&
|
|
params->color.space != MP_CSP_BT_709 &&
|
|
params->color.space != MP_CSP_BT_2020_NC &&
|
|
params->color.space != MP_CSP_BT_2020_C &&
|
|
params->color.space != MP_CSP_SMPTE_240M &&
|
|
params->color.space != MP_CSP_YCGCO)
|
|
{
|
|
// Makes no sense, so guess instead
|
|
// YCGCO should be separate, but libavcodec disagrees
|
|
params->color.space = MP_CSP_AUTO;
|
|
}
|
|
if (params->color.space == MP_CSP_AUTO)
|
|
params->color.space = mp_csp_guess_colorspace(params->w, params->h);
|
|
if (params->color.levels == MP_CSP_LEVELS_AUTO) {
|
|
if (params->color.gamma == MP_CSP_TRC_V_LOG) {
|
|
params->color.levels = MP_CSP_LEVELS_PC;
|
|
} else {
|
|
params->color.levels = MP_CSP_LEVELS_TV;
|
|
}
|
|
}
|
|
if (params->color.primaries == MP_CSP_PRIM_AUTO) {
|
|
// Guess based on the colormatrix as a first priority
|
|
if (params->color.space == MP_CSP_BT_2020_NC ||
|
|
params->color.space == MP_CSP_BT_2020_C) {
|
|
params->color.primaries = MP_CSP_PRIM_BT_2020;
|
|
} else if (params->color.space == MP_CSP_BT_709) {
|
|
params->color.primaries = MP_CSP_PRIM_BT_709;
|
|
} else {
|
|
// Ambiguous colormatrix for BT.601, guess based on res
|
|
params->color.primaries = mp_csp_guess_primaries(params->w, params->h);
|
|
}
|
|
}
|
|
if (params->color.gamma == MP_CSP_TRC_AUTO)
|
|
params->color.gamma = MP_CSP_TRC_BT_1886;
|
|
} else if (forced_csp == MP_CSP_RGB) {
|
|
params->color.space = MP_CSP_RGB;
|
|
params->color.levels = MP_CSP_LEVELS_PC;
|
|
|
|
// The majority of RGB content is either sRGB or (rarely) some other
|
|
// color space which we don't even handle, like AdobeRGB or
|
|
// ProPhotoRGB. The only reasonable thing we can do is assume it's
|
|
// sRGB and hope for the best, which should usually just work out fine.
|
|
// Note: sRGB primaries = BT.709 primaries
|
|
if (params->color.primaries == MP_CSP_PRIM_AUTO)
|
|
params->color.primaries = MP_CSP_PRIM_BT_709;
|
|
if (params->color.gamma == MP_CSP_TRC_AUTO)
|
|
params->color.gamma = MP_CSP_TRC_SRGB;
|
|
} else if (forced_csp == MP_CSP_XYZ) {
|
|
params->color.space = MP_CSP_XYZ;
|
|
params->color.levels = MP_CSP_LEVELS_PC;
|
|
|
|
// In theory, XYZ data does not really need a concept of 'primaries' to
|
|
// function, but this field can still be relevant for guiding gamut
|
|
// mapping optimizations, and it's also used by `mp_get_csp_matrix`
|
|
// when deciding what RGB space to map XYZ to for VOs that don't want
|
|
// to directly ingest XYZ into their color pipeline. BT.709 would be a
|
|
// sane default here, but it runs the risk of clipping any wide gamut
|
|
// content, so we pick BT.2020 instead to be on the safer side.
|
|
if (params->color.primaries == MP_CSP_PRIM_AUTO)
|
|
params->color.primaries = MP_CSP_PRIM_BT_2020;
|
|
if (params->color.gamma == MP_CSP_TRC_AUTO)
|
|
params->color.gamma = MP_CSP_TRC_LINEAR;
|
|
} else {
|
|
// We have no clue.
|
|
params->color.space = MP_CSP_AUTO;
|
|
params->color.levels = MP_CSP_LEVELS_AUTO;
|
|
params->color.primaries = MP_CSP_PRIM_AUTO;
|
|
params->color.gamma = MP_CSP_TRC_AUTO;
|
|
}
|
|
|
|
if (!params->color.sig_peak) {
|
|
if (params->color.gamma == MP_CSP_TRC_HLG) {
|
|
params->color.sig_peak = 1000 / MP_REF_WHITE; // reference display
|
|
} else {
|
|
// If the signal peak is unknown, we're forced to pick the TRC's
|
|
// nominal range as the signal peak to prevent clipping
|
|
params->color.sig_peak = mp_trc_nom_peak(params->color.gamma);
|
|
}
|
|
}
|
|
|
|
if (!mp_trc_is_hdr(params->color.gamma)) {
|
|
// Some clips have leftover HDR metadata after conversion to SDR, so to
|
|
// avoid blowing up the tone mapping code, strip/sanitize it
|
|
params->color.sig_peak = 1.0;
|
|
}
|
|
|
|
if (params->chroma_location == MP_CHROMA_AUTO) {
|
|
if (params->color.levels == MP_CSP_LEVELS_TV)
|
|
params->chroma_location = MP_CHROMA_LEFT;
|
|
if (params->color.levels == MP_CSP_LEVELS_PC)
|
|
params->chroma_location = MP_CHROMA_CENTER;
|
|
}
|
|
|
|
if (params->color.light == MP_CSP_LIGHT_AUTO) {
|
|
// HLG is always scene-referred (using its own OOTF), everything else
|
|
// we assume is display-refered by default.
|
|
if (params->color.gamma == MP_CSP_TRC_HLG) {
|
|
params->color.light = MP_CSP_LIGHT_SCENE_HLG;
|
|
} else {
|
|
params->color.light = MP_CSP_LIGHT_DISPLAY;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a new mp_image reference to av_frame.
|
|
struct mp_image *mp_image_from_av_frame(struct AVFrame *src)
|
|
{
|
|
struct mp_image *dst = &(struct mp_image){0};
|
|
AVFrameSideData *sd;
|
|
|
|
for (int p = 0; p < MP_MAX_PLANES; p++)
|
|
dst->bufs[p] = src->buf[p];
|
|
|
|
dst->hwctx = src->hw_frames_ctx;
|
|
|
|
mp_image_setfmt(dst, pixfmt2imgfmt(src->format));
|
|
mp_image_set_size(dst, src->width, src->height);
|
|
|
|
dst->params.p_w = src->sample_aspect_ratio.num;
|
|
dst->params.p_h = src->sample_aspect_ratio.den;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
dst->planes[i] = src->data[i];
|
|
dst->stride[i] = src->linesize[i];
|
|
}
|
|
|
|
dst->pict_type = src->pict_type;
|
|
|
|
dst->fields = 0;
|
|
if (src->interlaced_frame)
|
|
dst->fields |= MP_IMGFIELD_INTERLACED;
|
|
if (src->top_field_first)
|
|
dst->fields |= MP_IMGFIELD_TOP_FIRST;
|
|
if (src->repeat_pict == 1)
|
|
dst->fields |= MP_IMGFIELD_REPEAT_FIRST;
|
|
|
|
dst->params.color = (struct mp_colorspace){
|
|
.space = avcol_spc_to_mp_csp(src->colorspace),
|
|
.levels = avcol_range_to_mp_csp_levels(src->color_range),
|
|
.primaries = avcol_pri_to_mp_csp_prim(src->color_primaries),
|
|
.gamma = avcol_trc_to_mp_csp_trc(src->color_trc),
|
|
};
|
|
|
|
dst->params.chroma_location = avchroma_location_to_mp(src->chroma_location);
|
|
|
|
if (src->opaque_ref) {
|
|
struct mp_image_params *p = (void *)src->opaque_ref->data;
|
|
dst->params.rotate = p->rotate;
|
|
dst->params.stereo3d = p->stereo3d;
|
|
// Might be incorrect if colorspace changes.
|
|
dst->params.color.light = p->color.light;
|
|
}
|
|
|
|
#if LIBAVUTIL_VERSION_MICRO >= 100
|
|
sd = av_frame_get_side_data(src, AV_FRAME_DATA_ICC_PROFILE);
|
|
if (sd)
|
|
dst->icc_profile = sd->buf;
|
|
|
|
// Get the content light metadata if available
|
|
sd = av_frame_get_side_data(src, AV_FRAME_DATA_CONTENT_LIGHT_LEVEL);
|
|
if (sd) {
|
|
AVContentLightMetadata *clm = (AVContentLightMetadata *)sd->data;
|
|
dst->params.color.sig_peak = clm->MaxCLL / MP_REF_WHITE;
|
|
}
|
|
|
|
// Otherwise, try getting the mastering metadata if available
|
|
sd = av_frame_get_side_data(src, AV_FRAME_DATA_MASTERING_DISPLAY_METADATA);
|
|
if (!dst->params.color.sig_peak && sd) {
|
|
AVMasteringDisplayMetadata *mdm = (AVMasteringDisplayMetadata *)sd->data;
|
|
if (mdm->has_luminance)
|
|
dst->params.color.sig_peak = av_q2d(mdm->max_luminance) / MP_REF_WHITE;
|
|
}
|
|
|
|
sd = av_frame_get_side_data(src, AV_FRAME_DATA_A53_CC);
|
|
if (sd)
|
|
dst->a53_cc = sd->buf;
|
|
|
|
for (int n = 0; n < src->nb_side_data; n++) {
|
|
sd = src->side_data[n];
|
|
struct mp_ff_side_data mpsd = {
|
|
.type = sd->type,
|
|
.buf = sd->buf,
|
|
};
|
|
MP_TARRAY_APPEND(NULL, dst->ff_side_data, dst->num_ff_side_data, mpsd);
|
|
}
|
|
#endif
|
|
|
|
if (dst->hwctx) {
|
|
AVHWFramesContext *fctx = (void *)dst->hwctx->data;
|
|
dst->params.hw_subfmt = pixfmt2imgfmt(fctx->sw_format);
|
|
}
|
|
|
|
struct mp_image *res = mp_image_new_ref(dst);
|
|
|
|
// Allocated, but non-refcounted data.
|
|
talloc_free(dst->ff_side_data);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
// Convert the mp_image reference to a AVFrame reference.
|
|
struct AVFrame *mp_image_to_av_frame(struct mp_image *src)
|
|
{
|
|
struct mp_image *new_ref = mp_image_new_ref(src);
|
|
AVFrame *dst = av_frame_alloc();
|
|
if (!dst || !new_ref) {
|
|
talloc_free(new_ref);
|
|
av_frame_free(&dst);
|
|
return NULL;
|
|
}
|
|
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
dst->buf[p] = new_ref->bufs[p];
|
|
new_ref->bufs[p] = NULL;
|
|
}
|
|
|
|
dst->hw_frames_ctx = new_ref->hwctx;
|
|
new_ref->hwctx = NULL;
|
|
|
|
dst->format = imgfmt2pixfmt(src->imgfmt);
|
|
dst->width = src->w;
|
|
dst->height = src->h;
|
|
|
|
dst->sample_aspect_ratio.num = src->params.p_w;
|
|
dst->sample_aspect_ratio.den = src->params.p_h;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
dst->data[i] = src->planes[i];
|
|
dst->linesize[i] = src->stride[i];
|
|
}
|
|
dst->extended_data = dst->data;
|
|
|
|
dst->pict_type = src->pict_type;
|
|
if (src->fields & MP_IMGFIELD_INTERLACED)
|
|
dst->interlaced_frame = 1;
|
|
if (src->fields & MP_IMGFIELD_TOP_FIRST)
|
|
dst->top_field_first = 1;
|
|
if (src->fields & MP_IMGFIELD_REPEAT_FIRST)
|
|
dst->repeat_pict = 1;
|
|
|
|
dst->colorspace = mp_csp_to_avcol_spc(src->params.color.space);
|
|
dst->color_range = mp_csp_levels_to_avcol_range(src->params.color.levels);
|
|
dst->color_primaries =
|
|
mp_csp_prim_to_avcol_pri(src->params.color.primaries);
|
|
dst->color_trc = mp_csp_trc_to_avcol_trc(src->params.color.gamma);
|
|
|
|
dst->chroma_location = mp_chroma_location_to_av(src->params.chroma_location);
|
|
|
|
dst->opaque_ref = av_buffer_alloc(sizeof(struct mp_image_params));
|
|
if (!dst->opaque_ref)
|
|
abort();
|
|
*(struct mp_image_params *)dst->opaque_ref->data = src->params;
|
|
|
|
#if LIBAVUTIL_VERSION_MICRO >= 100
|
|
if (src->icc_profile) {
|
|
AVFrameSideData *sd =
|
|
av_frame_new_side_data_from_buf(dst, AV_FRAME_DATA_ICC_PROFILE,
|
|
new_ref->icc_profile);
|
|
if (!sd)
|
|
abort();
|
|
new_ref->icc_profile = NULL;
|
|
}
|
|
|
|
if (src->params.color.sig_peak) {
|
|
AVContentLightMetadata *clm =
|
|
av_content_light_metadata_create_side_data(dst);
|
|
if (!clm)
|
|
abort();
|
|
clm->MaxCLL = src->params.color.sig_peak * MP_REF_WHITE;
|
|
}
|
|
|
|
// Add back side data, but only for types which are not specially handled
|
|
// above. Keep in mind that the types above will be out of sync anyway.
|
|
for (int n = 0; n < new_ref->num_ff_side_data; n++) {
|
|
struct mp_ff_side_data *mpsd = &new_ref->ff_side_data[n];
|
|
if (!av_frame_get_side_data(dst, mpsd->type)) {
|
|
AVFrameSideData *sd = av_frame_new_side_data_from_buf(dst, mpsd->type,
|
|
mpsd->buf);
|
|
if (!sd)
|
|
abort();
|
|
mpsd->buf = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
talloc_free(new_ref);
|
|
|
|
if (dst->format == AV_PIX_FMT_NONE)
|
|
av_frame_free(&dst);
|
|
return dst;
|
|
}
|
|
|
|
// Same as mp_image_to_av_frame(), but unref img. (It does so even on failure.)
|
|
struct AVFrame *mp_image_to_av_frame_and_unref(struct mp_image *img)
|
|
{
|
|
AVFrame *frame = mp_image_to_av_frame(img);
|
|
talloc_free(img);
|
|
return frame;
|
|
}
|
|
|
|
void memset_pic(void *dst, int fill, int bytesPerLine, int height, int stride)
|
|
{
|
|
if (bytesPerLine == stride && height) {
|
|
memset(dst, fill, stride * (height - 1) + bytesPerLine);
|
|
} else {
|
|
for (int i = 0; i < height; i++) {
|
|
memset(dst, fill, bytesPerLine);
|
|
dst = (uint8_t *)dst + stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
void memset16_pic(void *dst, int fill, int unitsPerLine, int height, int stride)
|
|
{
|
|
if (fill == 0) {
|
|
memset_pic(dst, 0, unitsPerLine * 2, height, stride);
|
|
} else {
|
|
for (int i = 0; i < height; i++) {
|
|
uint16_t *line = dst;
|
|
uint16_t *end = line + unitsPerLine;
|
|
while (line < end)
|
|
*line++ = fill;
|
|
dst = (uint8_t *)dst + stride;
|
|
}
|
|
}
|
|
}
|