1
0
mirror of https://github.com/mpv-player/mpv synced 2024-12-11 17:37:23 +00:00
mpv/libfaad2/sbr_qmf.c
diego 228ca70d48 update to the 2.0 release of faad, patch by adland
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@12528 b3059339-0415-0410-9bf9-f77b7e298cf2
2004-06-02 22:59:04 +00:00

561 lines
16 KiB
C

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: sbr_qmf.c,v 1.2 2003/10/03 22:22:27 alex Exp $
**/
#include "common.h"
#include "structs.h"
#ifdef SBR_DEC
#include <stdlib.h>
#include <string.h>
#include "sbr_dct.h"
#include "sbr_qmf.h"
#include "sbr_qmf_c.h"
#include "sbr_syntax.h"
qmfa_info *qmfa_init(uint8_t channels)
{
qmfa_info *qmfa = (qmfa_info*)faad_malloc(sizeof(qmfa_info));
qmfa->x = (real_t*)faad_malloc(channels * 10 * sizeof(real_t));
memset(qmfa->x, 0, channels * 10 * sizeof(real_t));
qmfa->channels = channels;
return qmfa;
}
void qmfa_end(qmfa_info *qmfa)
{
if (qmfa)
{
if (qmfa->x) faad_free(qmfa->x);
faad_free(qmfa);
}
}
void sbr_qmf_analysis_32(sbr_info *sbr, qmfa_info *qmfa, const real_t *input,
qmf_t X[MAX_NTSRHFG][32], uint8_t offset, uint8_t kx)
{
ALIGN real_t u[64];
#ifndef SBR_LOW_POWER
ALIGN real_t x[64], y[64];
#else
ALIGN real_t y[32];
#endif
uint16_t in = 0;
uint8_t l;
/* qmf subsample l */
for (l = 0; l < sbr->numTimeSlotsRate; l++)
{
int16_t n;
/* shift input buffer x */
memmove(qmfa->x + 32, qmfa->x, (320-32)*sizeof(real_t));
/* add new samples to input buffer x */
for (n = 32 - 1; n >= 0; n--)
{
#ifdef FIXED_POINT
qmfa->x[n] = (input[in++]) >> 5;
#else
qmfa->x[n] = input[in++];
#endif
}
/* window and summation to create array u */
for (n = 0; n < 64; n++)
{
u[n] = MUL_F(qmfa->x[n], qmf_c[2*n]) +
MUL_F(qmfa->x[n + 64], qmf_c[2*(n + 64)]) +
MUL_F(qmfa->x[n + 128], qmf_c[2*(n + 128)]) +
MUL_F(qmfa->x[n + 192], qmf_c[2*(n + 192)]) +
MUL_F(qmfa->x[n + 256], qmf_c[2*(n + 256)]);
}
/* calculate 32 subband samples by introducing X */
#ifdef SBR_LOW_POWER
y[0] = u[48];
for (n = 1; n < 16; n++)
y[n] = u[n+48] + u[48-n];
for (n = 16; n < 32; n++)
y[n] = -u[n-16] + u[48-n];
DCT3_32_unscaled(u, y);
for (n = 0; n < 32; n++)
{
if (n < kx)
{
#ifdef FIXED_POINT
QMF_RE(X[l + offset][n]) = u[n] << 1;
#else
QMF_RE(X[l + offset][n]) = 2. * u[n];
#endif
} else {
QMF_RE(X[l + offset][n]) = 0;
}
}
#else
x[0] = u[0];
for (n = 0; n < 31; n++)
{
x[2*n+1] = u[n+1] + u[63-n];
x[2*n+2] = u[n+1] - u[63-n];
}
x[63] = u[32];
DCT4_64_kernel(y, x);
for (n = 0; n < 32; n++)
{
if (n < kx)
{
#ifdef FIXED_POINT
QMF_RE(X[l + offset][n]) = y[n] << 1;
QMF_IM(X[l + offset][n]) = -y[63-n] << 1;
#else
QMF_RE(X[l + offset][n]) = 2. * y[n];
QMF_IM(X[l + offset][n]) = -2. * y[63-n];
#endif
} else {
QMF_RE(X[l + offset][n]) = 0;
QMF_IM(X[l + offset][n]) = 0;
}
}
#endif
}
}
qmfs_info *qmfs_init(uint8_t channels)
{
qmfs_info *qmfs = (qmfs_info*)faad_malloc(sizeof(qmfs_info));
#ifndef SBR_LOW_POWER
qmfs->v[0] = (real_t*)faad_malloc(channels * 10 * sizeof(real_t));
memset(qmfs->v[0], 0, channels * 10 * sizeof(real_t));
qmfs->v[1] = (real_t*)faad_malloc(channels * 10 * sizeof(real_t));
memset(qmfs->v[1], 0, channels * 10 * sizeof(real_t));
#else
qmfs->v[0] = (real_t*)faad_malloc(channels * 20 * sizeof(real_t));
memset(qmfs->v[0], 0, channels * 20 * sizeof(real_t));
qmfs->v[1] = NULL;
#endif
qmfs->v_index = 0;
qmfs->channels = channels;
#ifdef USE_SSE
if (cpu_has_sse())
{
qmfs->qmf_func = sbr_qmf_synthesis_64_sse;
} else {
qmfs->qmf_func = sbr_qmf_synthesis_64;
}
#endif
return qmfs;
}
void qmfs_end(qmfs_info *qmfs)
{
if (qmfs)
{
if (qmfs->v[0]) faad_free(qmfs->v[0]);
#ifndef SBR_LOW_POWER
if (qmfs->v[1]) faad_free(qmfs->v[1]);
#endif
faad_free(qmfs);
}
}
#ifdef SBR_LOW_POWER
void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
real_t *output)
{
ALIGN real_t x[64];
ALIGN real_t y[64];
int16_t n, k, out = 0;
uint8_t l;
/* qmf subsample l */
for (l = 0; l < sbr->numTimeSlotsRate; l++)
{
//real_t *v0, *v1;
/* shift buffers */
//memmove(qmfs->v[0] + 64, qmfs->v[0], (640-64)*sizeof(real_t));
//memmove(qmfs->v[1] + 64, qmfs->v[1], (640-64)*sizeof(real_t));
memmove(qmfs->v[0] + 128, qmfs->v[0], (1280-128)*sizeof(real_t));
//v0 = qmfs->v[qmfs->v_index];
//v1 = qmfs->v[(qmfs->v_index + 1) & 0x1];
//qmfs->v_index = (qmfs->v_index + 1) & 0x1;
/* calculate 128 samples */
for (k = 0; k < 64; k++)
{
#ifdef FIXED_POINT
x[k] = QMF_RE(X[l][k]);
#else
x[k] = QMF_RE(X[l][k]) / 32.;
#endif
}
for (n = 0; n < 32; n++)
{
y[2*n] = -x[2*n];
y[2*n+1] = x[2*n+1];
}
DCT2_64_unscaled(x, x);
for (n = 0; n < 64; n++)
{
qmfs->v[0][n+32] = x[n];
}
for (n = 0; n < 32; n++)
{
qmfs->v[0][31 - n] = x[n + 1];
}
DST2_64_unscaled(x, y);
qmfs->v[0][96] = 0;
for (n = 1; n < 32; n++)
{
qmfs->v[0][n + 96] = x[n-1];
}
/* calculate 64 output samples and window */
for (k = 0; k < 64; k++)
{
#if 1
output[out++] = MUL_F(qmfs->v[0][k], qmf_c[k]) +
MUL_F(qmfs->v[0][192 + k], qmf_c[64 + k]) +
MUL_F(qmfs->v[0][256 + k], qmf_c[128 + k]) +
MUL_F(qmfs->v[0][256 + 192 + k], qmf_c[128 + 64 + k]) +
MUL_F(qmfs->v[0][512 + k], qmf_c[256 + k]) +
MUL_F(qmfs->v[0][512 + 192 + k], qmf_c[256 + 64 + k]) +
MUL_F(qmfs->v[0][768 + k], qmf_c[384 + k]) +
MUL_F(qmfs->v[0][768 + 192 + k], qmf_c[384 + 64 + k]) +
MUL_F(qmfs->v[0][1024 + k], qmf_c[512 + k]) +
MUL_F(qmfs->v[0][1024 + 192 + k], qmf_c[512 + 64 + k]);
#else
output[out++] = MUL_F(v0[k], qmf_c[k]) +
MUL_F(v0[64 + k], qmf_c[64 + k]) +
MUL_F(v0[128 + k], qmf_c[128 + k]) +
MUL_F(v0[192 + k], qmf_c[192 + k]) +
MUL_F(v0[256 + k], qmf_c[256 + k]) +
MUL_F(v0[320 + k], qmf_c[320 + k]) +
MUL_F(v0[384 + k], qmf_c[384 + k]) +
MUL_F(v0[448 + k], qmf_c[448 + k]) +
MUL_F(v0[512 + k], qmf_c[512 + k]) +
MUL_F(v0[576 + k], qmf_c[576 + k]);
#endif
}
}
}
void sbr_qmf_synthesis_64_sse(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
real_t *output)
{
ALIGN real_t x[64];
ALIGN real_t y[64];
ALIGN real_t y2[64];
int16_t n, k, out = 0;
uint8_t l;
/* qmf subsample l */
for (l = 0; l < sbr->numTimeSlotsRate; l++)
{
//real_t *v0, *v1;
/* shift buffers */
//memmove(qmfs->v[0] + 64, qmfs->v[0], (640-64)*sizeof(real_t));
//memmove(qmfs->v[1] + 64, qmfs->v[1], (640-64)*sizeof(real_t));
memmove(qmfs->v[0] + 128, qmfs->v[0], (1280-128)*sizeof(real_t));
//v0 = qmfs->v[qmfs->v_index];
//v1 = qmfs->v[(qmfs->v_index + 1) & 0x1];
//qmfs->v_index = (qmfs->v_index + 1) & 0x1;
/* calculate 128 samples */
for (k = 0; k < 64; k++)
{
#ifdef FIXED_POINT
x[k] = QMF_RE(X[l][k]);
#else
x[k] = QMF_RE(X[l][k]) / 32.;
#endif
}
for (n = 0; n < 32; n++)
{
y[2*n] = -x[2*n];
y[2*n+1] = x[2*n+1];
}
DCT2_64_unscaled(x, x);
for (n = 0; n < 64; n++)
{
qmfs->v[0][n+32] = x[n];
}
for (n = 0; n < 32; n++)
{
qmfs->v[0][31 - n] = x[n + 1];
}
DST2_64_unscaled(x, y);
qmfs->v[0][96] = 0;
for (n = 1; n < 32; n++)
{
qmfs->v[0][n + 96] = x[n-1];
}
/* calculate 64 output samples and window */
for (k = 0; k < 64; k++)
{
#if 1
output[out++] = MUL_F(qmfs->v[0][k], qmf_c[k]) +
MUL_F(qmfs->v[0][192 + k], qmf_c[64 + k]) +
MUL_F(qmfs->v[0][256 + k], qmf_c[128 + k]) +
MUL_F(qmfs->v[0][256 + 192 + k], qmf_c[128 + 64 + k]) +
MUL_F(qmfs->v[0][512 + k], qmf_c[256 + k]) +
MUL_F(qmfs->v[0][512 + 192 + k], qmf_c[256 + 64 + k]) +
MUL_F(qmfs->v[0][768 + k], qmf_c[384 + k]) +
MUL_F(qmfs->v[0][768 + 192 + k], qmf_c[384 + 64 + k]) +
MUL_F(qmfs->v[0][1024 + k], qmf_c[512 + k]) +
MUL_F(qmfs->v[0][1024 + 192 + k], qmf_c[512 + 64 + k]);
#else
output[out++] = MUL_F(v0[k], qmf_c[k]) +
MUL_F(v0[64 + k], qmf_c[64 + k]) +
MUL_F(v0[128 + k], qmf_c[128 + k]) +
MUL_F(v0[192 + k], qmf_c[192 + k]) +
MUL_F(v0[256 + k], qmf_c[256 + k]) +
MUL_F(v0[320 + k], qmf_c[320 + k]) +
MUL_F(v0[384 + k], qmf_c[384 + k]) +
MUL_F(v0[448 + k], qmf_c[448 + k]) +
MUL_F(v0[512 + k], qmf_c[512 + k]) +
MUL_F(v0[576 + k], qmf_c[576 + k]);
#endif
}
}
}
#else
void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
real_t *output)
{
ALIGN real_t x1[64], x2[64];
real_t scale = 1.f/64.f;
int16_t n, k, out = 0;
uint8_t l;
/* qmf subsample l */
for (l = 0; l < sbr->numTimeSlotsRate; l++)
{
real_t *v0, *v1;
/* shift buffers */
memmove(qmfs->v[0] + 64, qmfs->v[0], (640-64)*sizeof(real_t));
memmove(qmfs->v[1] + 64, qmfs->v[1], (640-64)*sizeof(real_t));
v0 = qmfs->v[qmfs->v_index];
v1 = qmfs->v[(qmfs->v_index + 1) & 0x1];
qmfs->v_index = (qmfs->v_index + 1) & 0x1;
/* calculate 128 samples */
x1[0] = scale*QMF_RE(X[l][0]);
x2[63] = scale*QMF_IM(X[l][0]);
for (k = 0; k < 31; k++)
{
x1[2*k+1] = scale*(QMF_RE(X[l][2*k+1]) - QMF_RE(X[l][2*k+2]));
x1[2*k+2] = scale*(QMF_RE(X[l][2*k+1]) + QMF_RE(X[l][2*k+2]));
x2[61 - 2*k] = scale*(QMF_IM(X[l][2*k+2]) - QMF_IM(X[l][2*k+1]));
x2[62 - 2*k] = scale*(QMF_IM(X[l][2*k+2]) + QMF_IM(X[l][2*k+1]));
}
x1[63] = scale*QMF_RE(X[l][63]);
x2[0] = scale*QMF_IM(X[l][63]);
DCT4_64_kernel(x1, x1);
DCT4_64_kernel(x2, x2);
for (n = 0; n < 32; n++)
{
v0[ 2*n] = x2[2*n] - x1[2*n];
v1[63-2*n] = x2[2*n] + x1[2*n];
v0[ 2*n+1] = -x2[2*n+1] - x1[2*n+1];
v1[62-2*n] = -x2[2*n+1] + x1[2*n+1];
}
/* calculate 64 output samples and window */
for (k = 0; k < 64; k++)
{
output[out++] = MUL_F(v0[k], qmf_c[k]) +
MUL_F(v0[64 + k], qmf_c[64 + k]) +
MUL_F(v0[128 + k], qmf_c[128 + k]) +
MUL_F(v0[192 + k], qmf_c[192 + k]) +
MUL_F(v0[256 + k], qmf_c[256 + k]) +
MUL_F(v0[320 + k], qmf_c[320 + k]) +
MUL_F(v0[384 + k], qmf_c[384 + k]) +
MUL_F(v0[448 + k], qmf_c[448 + k]) +
MUL_F(v0[512 + k], qmf_c[512 + k]) +
MUL_F(v0[576 + k], qmf_c[576 + k]);
}
}
}
#ifdef USE_SSE
void memmove_sse_576(real_t *out, const real_t *in)
{
__m128 m[144];
uint16_t i;
for (i = 0; i < 144; i++)
{
m[i] = _mm_load_ps(&in[i*4]);
}
for (i = 0; i < 144; i++)
{
_mm_store_ps(&out[i*4], m[i]);
}
}
void sbr_qmf_synthesis_64_sse(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
real_t *output)
{
ALIGN real_t x1[64], x2[64];
real_t scale = 1.f/64.f;
int16_t n, k, out = 0;
uint8_t l;
/* qmf subsample l */
for (l = 0; l < sbr->numTimeSlotsRate; l++)
{
real_t *v0, *v1;
/* shift buffers */
memmove_sse_576(qmfs->v[0] + 64, qmfs->v[0]);
memmove_sse_576(qmfs->v[1] + 64, qmfs->v[1]);
v0 = qmfs->v[qmfs->v_index];
v1 = qmfs->v[(qmfs->v_index + 1) & 0x1];
qmfs->v_index = (qmfs->v_index + 1) & 0x1;
/* calculate 128 samples */
x1[0] = scale*QMF_RE(X[l][0]);
x2[63] = scale*QMF_IM(X[l][0]);
for (k = 0; k < 31; k++)
{
x1[2*k+1] = scale*(QMF_RE(X[l][2*k+1]) - QMF_RE(X[l][2*k+2]));
x1[2*k+2] = scale*(QMF_RE(X[l][2*k+1]) + QMF_RE(X[l][2*k+2]));
x2[61 - 2*k] = scale*(QMF_IM(X[l][2*k+2]) - QMF_IM(X[l][2*k+1]));
x2[62 - 2*k] = scale*(QMF_IM(X[l][2*k+2]) + QMF_IM(X[l][2*k+1]));
}
x1[63] = scale*QMF_RE(X[l][63]);
x2[0] = scale*QMF_IM(X[l][63]);
DCT4_64_kernel(x1, x1);
DCT4_64_kernel(x2, x2);
for (n = 0; n < 32; n++)
{
v0[ 2*n ] = x2[2*n] - x1[2*n];
v1[63- 2*n ] = x2[2*n] + x1[2*n];
v0[ 2*n+1 ] = -x2[2*n+1] - x1[2*n+1];
v1[63-(2*n+1)] = -x2[2*n+1] + x1[2*n+1];
}
/* calculate 64 output samples and window */
for (k = 0; k < 64; k+=4)
{
__m128 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9;
__m128 c0, c1, c2, c3, c4, c5, c6, c7, c8, c9;
__m128 s1, s2, s3, s4, s5, s6, s7, s8, s9;
m0 = _mm_load_ps(&v0[k]);
m1 = _mm_load_ps(&v0[k + 64]);
m2 = _mm_load_ps(&v0[k + 128]);
m3 = _mm_load_ps(&v0[k + 192]);
m4 = _mm_load_ps(&v0[k + 256]);
c0 = _mm_load_ps(&qmf_c[k]);
c1 = _mm_load_ps(&qmf_c[k + 64]);
c2 = _mm_load_ps(&qmf_c[k + 128]);
c3 = _mm_load_ps(&qmf_c[k + 192]);
c4 = _mm_load_ps(&qmf_c[k + 256]);
m0 = _mm_mul_ps(m0, c0);
m1 = _mm_mul_ps(m1, c1);
m2 = _mm_mul_ps(m2, c2);
m3 = _mm_mul_ps(m3, c3);
m4 = _mm_mul_ps(m4, c4);
s1 = _mm_add_ps(m0, m1);
s2 = _mm_add_ps(m2, m3);
s6 = _mm_add_ps(s1, s2);
m5 = _mm_load_ps(&v0[k + 320]);
m6 = _mm_load_ps(&v0[k + 384]);
m7 = _mm_load_ps(&v0[k + 448]);
m8 = _mm_load_ps(&v0[k + 512]);
m9 = _mm_load_ps(&v0[k + 576]);
c5 = _mm_load_ps(&qmf_c[k + 320]);
c6 = _mm_load_ps(&qmf_c[k + 384]);
c7 = _mm_load_ps(&qmf_c[k + 448]);
c8 = _mm_load_ps(&qmf_c[k + 512]);
c9 = _mm_load_ps(&qmf_c[k + 576]);
m5 = _mm_mul_ps(m5, c5);
m6 = _mm_mul_ps(m6, c6);
m7 = _mm_mul_ps(m7, c7);
m8 = _mm_mul_ps(m8, c8);
m9 = _mm_mul_ps(m9, c9);
s3 = _mm_add_ps(m4, m5);
s4 = _mm_add_ps(m6, m7);
s5 = _mm_add_ps(m8, m9);
s7 = _mm_add_ps(s3, s4);
s8 = _mm_add_ps(s5, s6);
s9 = _mm_add_ps(s7, s8);
_mm_store_ps(&output[out], s9);
out += 4;
}
}
}
#endif
#endif
#endif